File size: 7,277 Bytes
73f9b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp

def l1_loss(network_output, gt):
    return torch.abs((network_output - gt)).mean()

def l2_loss(network_output, gt):
    return ((network_output - gt) ** 2).mean()

def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
    return gauss / gauss.sum()

def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window

def ssim(img1, img2, window_size=11, size_average=True):
    channel = img1.size(-3)
    window = create_window(window_size, channel)

    if img1.is_cuda:
        window = window.cuda(img1.get_device())
    window = window.type_as(img1)

    return _ssim(img1, img2, window, window_size, channel, size_average)

def _ssim(img1, img2, window, window_size, channel, size_average=True):
    mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
    mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2

    C1 = 0.01 ** 2
    C2 = 0.03 ** 2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    if size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1).mean(1).mean(1)
    
import torch
import torch.nn as nn

from taming.modules.losses.vqperceptual import *  # TODO: taming dependency yes/no?


class LPIPSWithDiscriminator(nn.Module):
    def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
                 disc_loss="hinge"):

        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        # output log variance
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, inputs, reconstructions, optimizer_idx,
                global_step, last_layer=None, cond=None, split="train"):
        rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
            rec_loss = rec_loss + self.perceptual_weight * p_loss
            
        # nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        # now the GAN part
        if optimizer_idx == 0:
            # generator update
            logits_fake = self.discriminator(reconstructions.contiguous())
            # g_loss = -torch.mean(logits_fake)
            g_loss = F.relu(1 - logits_fake).mean()
            # if self.disc_factor > 0.0:
            #     try:
            #         d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
            #     except RuntimeError:
            #         assert not self.training
            #         d_weight = torch.tensor(0.0)
            # else:
            #     d_weight = torch.tensor(0.0)

            # disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            # loss = d_weight * disc_factor * g_loss

            # return loss, log
            return g_loss

        if optimizer_idx == 1:
            # second pass for discriminator update

            logits_real = self.discriminator(inputs.contiguous().detach())
            logits_fake = self.discriminator(reconstructions.contiguous().detach())

            # disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            # d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            # log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
            #        "{}/logits_real".format(split): logits_real.detach().mean(),
            #        "{}/logits_fake".format(split): logits_fake.detach().mean()
            #        }
            # return d_loss, log

            d_loss = self.disc_loss(logits_real, logits_fake)
            return d_loss

import torch
from chamfer_distance import ChamferDistance

# 初始化 Chamfer Distance 模块
chamfer_dist_module = ChamferDistance()

def calculate_chamfer_loss(pred, gt):
    """
    计算 Chamfer Distance 损失
    Args:
        pred (torch.Tensor): 预测点云,维度为 (batch_size, num_points, 3)
        gt (torch.Tensor): 真实点云,维度为 (batch_size, num_points, 3)
        chamfer_dist_module (ChamferDistance): 预先初始化的 Chamfer Distance 模块

    Returns:
        torch.Tensor: Chamfer Distance 损失
    """
    # 计算 Chamfer Distance
    dist1, dist2, idx1, idx2 = chamfer_dist_module(pred, gt)
    loss = (torch.mean(dist1) + torch.mean(dist2)) / 2

    return loss

if __name__ == "__main__":

    discriminator = LPIPSWithDiscriminator(disc_start=0, disc_weight=0.5)