File size: 5,614 Bytes
98bebfc
 
699a5e8
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699a5e8
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699a5e8
98bebfc
699a5e8
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os, sys
import math
import spaces
import json
import importlib
import time
from .data.online_render_dataloader import load_obj
import glm
from pathlib import Path

import cv2
import torchvision
import random
from tqdm import tqdm
import numpy as np
from PIL import Image
import sys
# from .src.utils.mesh import Mesh
import nvdiffrast.torch as dr
from .src.utils import obj, mesh, render_utils, render
import torch
import torch.nn.functional as F
import random
from kiui.cam import orbit_camera
import itertools
# from .src.utils.material import Material
# from .utils.camera_util import (
#     FOV_to_intrinsics, 
#     center_looking_at_camera_pose, 
#     get_circular_camera_poses,
# )
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
import re

def sample_spherical(phi, theta, cam_radius):
    theta = np.deg2rad(theta)
    phi = np.deg2rad(phi)   

    z = cam_radius * np.cos(phi) * np.sin(theta)
    x = cam_radius * np.sin(phi) * np.sin(theta)
    y = cam_radius * np.cos(theta)

    return x, y, z

def load_mipmap(env_path):
    diffuse_path = os.path.join(env_path, "diffuse.pth")
    diffuse = torch.load(diffuse_path, map_location=torch.device('cpu'))

    specular = []
    for i in range(6):
        specular_path = os.path.join(env_path, f"specular_{i}.pth")
        specular_tensor = torch.load(specular_path, map_location=torch.device('cpu'))
        specular.append(specular_tensor)
    return [specular, diffuse]

ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)


def random_scene():
    train_res = [512, 512]
    cam_near_far = [0.1, 1000.0]
    fovy = np.deg2rad(50)
    spp = 1
    cam_radius = 3.5
    layers = 1
    iter_res = 512
    proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])

    all_azimuths = np.array([0, 90, 180, 270])
    all_elevations = np.array([60, 90, 90, 120])

    # all_azimuths = np.array([0])
    # all_elevations = np.array([60])
    all_mv = []
    all_campos = []
    all_mvp = []
    for index, (azimuths, elevations) in enumerate(zip(all_azimuths, all_elevations)):
        x, y, z = sample_spherical(azimuths, elevations, cam_radius)
        eye = glm.vec3(x, y, z)
        at = glm.vec3(0.0, 0.0, 0.0)
        up = glm.vec3(0.0, 1.0, 0.0)
        view_matrix = glm.lookAt(eye, at, up)
        mv = torch.from_numpy(np.array(view_matrix))
        mvp   = proj_mtx @ (mv)  #w2c
        campos = torch.linalg.inv(mv)[:3, 3]
        all_mv.append(mv[None, ...].cuda())
        all_campos.append(campos[None, ...].cuda())
        all_mvp.append(mvp[None, ...].cuda())
    return all_mv, all_mvp, all_campos

@spaces.GPU
def rendering(ref_mesh):
    GLCTX = dr.RasterizeCudaContext()
    all_mv, all_mvp, all_campos = random_scene()
    iter_res = [512, 512]
    iter_spp = 1
    layers = 1
    all_albedo = []
    all_alpha = []
    all_image = []
    all_ccm = []
    all_depth = []
    all_normal = []
    for i in range(len(all_mv)):
        mvp = all_mvp[i]
        campos = all_campos[i]

        with torch.no_grad():
            buffer_dict = render.render_mesh(GLCTX, ref_mesh, mvp, campos, [ENV], None, None, 
                                            materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True, 
                                            background=None, gt_render=True)
        image = buffer_dict['shaded'][0]
        albedo = (buffer_dict['albedo'][0]).clamp(0., 1.)
        alpha = buffer_dict['mask'][0][:, :, 3:]
        ccm = buffer_dict['ccm'][0][...,:3]
        alpha = buffer_dict['mask'][0][...,:3]
        albedo = buffer_dict['albedo'][0].clamp(0., 1.)
        # breakpoint()
        ccm = ccm * alpha
        depth = buffer_dict['depth'][0]
        normal = buffer_dict['gb_normal'][0]
        all_image.append(image)
        all_albedo.append(albedo)
        all_alpha.append(alpha)
        all_ccm.append(ccm)
        all_depth.append(depth)
        all_normal.append(normal)
    all_albedo = torch.stack(all_albedo)
    all_alpha = torch.stack(all_alpha)
    all_ccm = torch.stack(all_ccm)
    all_normal = torch.stack(all_normal)

    all_image = torch.stack(all_image)
    all_depth = torch.stack(all_depth)

    # breakpoint()
    return all_image.detach(), all_albedo.detach(), all_alpha.detach(), all_ccm.detach(), all_depth.detach(), all_normal.detach()

def render_mesh(mesh_path):
    ref_mesh = load_obj(mesh_path, return_attributes=False)
    ref_mesh = mesh.auto_normals(ref_mesh)
    ref_mesh = mesh.compute_tangents(ref_mesh)
    ref_mesh.rotate_x_90()
    # print(f"start ==> {mesh_path}")
    rgb, albedo, alpha, ccm, depth, normal = rendering(ref_mesh)
    depth = depth[...,:3] * alpha
    # breakpoint()
    torchvision.utils.save_image(rgb.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_rgb.png")
    torchvision.utils.save_image(albedo.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_albedo.png")
    torchvision.utils.save_image(alpha.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_alpha.png")
    torchvision.utils.save_image(ccm.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_ccm.png")
    torchvision.utils.save_image(depth.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_depth.png", normalize=True)
    torchvision.utils.save_image(normal.permute(0, 3, 1, 2), f"debug_image/{mesh_path.split('/')[-1].split('.')[0]}_normal.png")
    print(f"end ==> {mesh_path}")

if __name__ == '__main__':
    render_mesh("./meshes_online/bubble_mart_blue/bubble_mart_blue.obj")