File size: 18,631 Bytes
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from transformers import AutoProcessor, AutoModelForCausalLM
import rembg
from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler
from pytorch_lightning import seed_everything
import os

from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
from models.lrm.utils.infer_util import remove_background, resize_foreground, save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.camera_util import get_zero123plus_input_cameras, get_custom_zero123plus_input_cameras, get_flux_input_cameras
from utils.tool import NormalTransfer, get_render_cameras_frames, load_mipmap
from utils.tool import get_background, get_render_cameras_video, render_frames
import time

device = "cuda"
resolution = 512
save_dir = "./outputs"
zero123plus_diffusion_steps = 75
normal_transfer = NormalTransfer()
rembg_session = rembg.new_session()
isomer_azimuths = torch.from_numpy(np.array([270, 0, 90, 180])).to(device)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).to(device)
isomer_radius = 4.1
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
# seed_everything(42)

# model initialization and loading
# flux
print('==> Loading Flux model ...')
flux_base_model_pth = "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev"
flux_controlnet = FluxControlNetModel.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/flux_controlnets/FLUX.1-dev-ControlNet-Union-Pro")
flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)

flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')


flux_pipe.to(device=device, dtype=torch.bfloat16)
generator = torch.Generator(device=device).manual_seed(0)

# lrm
print('==> Loading LRM model ...')
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()

# zero123++
print('==> Loading diffusion model ...')
zero123plus_pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="./models/zero123plus",
    torch_dtype=torch.float16,
)
zero123plus_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    zero123plus_pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = "./checkpoint/zero123++/flexgen_19w.ckpt"
state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
zero123plus_pipeline = zero123plus_pipeline.to(device)

# unet_ckpt_path = "checkpoint/zero123++/diffusion_pytorch_model.bin"
# state_dict = torch.load(unet_ckpt_path, map_location='cpu')
# zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
# zero123plus_pipeline = zero123plus_pipeline.to(device)

# florence
caption_model = AutoModelForCausalLM.from_pretrained(
        "/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", torch_dtype=torch.bfloat16, trust_remote_code=True,
    ).to(device)
caption_processor = AutoProcessor.from_pretrained("/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", trust_remote_code=True)

# Flux multi-view generation
def multi_view_rgb_normal_generation_with_controlnet(prompt, image, strength=1.0,
                                                    control_image=[], 
                                                    control_mode=[],
                                                    control_guidance_start=None,
                                                    control_guidance_end=None,
                                                    controlnet_conditioning_scale=None,
                                                    lora_scale=1.0
                                                    ):
    control_mode_dict = {
        'canny': 0,
        'tile': 1,
        'depth': 2,
        'blur': 3,
        'pose': 4,
        'gray': 5,
        'lq': 6,
    } # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only

    hparam_dict = {
        'prompt': prompt,
        'image': image,
        'strength': strength,
        'num_inference_steps': 30,
        'guidance_scale': 3.5,
        'num_images_per_prompt': 1,
        'width': resolution*4,
        'height': resolution*2,
        'output_type': 'np',
        'generator': generator,
        'joint_attention_kwargs': {"scale": lora_scale}
    }

    # append controlnet hparams
    if len(control_image) > 0:
        assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
        
        ctrl_hparams = {
            'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
            'control_image': control_image,
            'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
            'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
            'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
        }

        hparam_dict.update(ctrl_hparams)

    # generate multi-view images
    with torch.no_grad():
        image = flux_pipe(
            **hparam_dict
        ).images
    return image

# captioning
def run_captioning(image):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.bfloat16
    
    if isinstance(image, str):  # If image is a file path
        image = Image.open(image).convert("RGB")

    prompt = "<MORE_DETAILED_CAPTION>"
    inputs = caption_processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
    # print(f"inputs {inputs}")

    generated_ids = caption_model.generate(
        input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
    )

    generated_text = caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = caption_processor.post_process_generation(
        generated_text, task=prompt, image_size=(image.width, image.height)
    )
    # print(f"parsed_answer = {parsed_answer}")
    caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
    return caption_text


# zero123++ multi-view generation
def multi_view_rgb_generation(cond_img):
    # generate multi-view images
    with torch.no_grad():
        output_image = zero123plus_pipeline(
        cond_img, 
        num_inference_steps=zero123plus_diffusion_steps, 
        width=resolution*2,
        height=resolution*2,
    ).images[0]
    return output_image

# lrm reconstructions
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False, render_azimuths=None, render_elevations=None, render_radius=None, render_fov=30):
    images = image.unsqueeze(0).to(device)
    images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
    # breakpoint()
    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras)
        
        mesh_path_idx = os.path.join(save_path, f'{name}.obj')

        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=export_texmap,
            **infer_config,
        )
        if export_texmap:
            vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
            save_obj_with_mtl(
                vertices.data.cpu().numpy(),
                uvs.data.cpu().numpy(),
                faces.data.cpu().numpy(),
                mesh_tex_idx.data.cpu().numpy(),
                tex_map.permute(1, 2, 0).data.cpu().numpy(),
                mesh_path_idx,
            )
        else:
            vertices, faces, vertex_colors = mesh_out
            save_obj(vertices, faces, vertex_colors, mesh_path_idx)
        print(f"Mesh saved to {mesh_path_idx}")

        render_size = 512
        if if_save_video:
            video_path_idx = os.path.join(save_path, f'{name}.mp4')
            render_size = infer_config.render_resolution
            ENV = load_mipmap("models/lrm/env_mipmap/6")
            materials = (0.0,0.9)
            
            all_mv, all_mvp, all_campos = get_render_cameras_video(
                batch_size=1, 
                M=240, 
                radius=4.5, 
                elevation=(90, 60.0),
                is_flexicubes=True,
                fov=30
            )
            
            frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
                model, 
                planes, 
                render_cameras=all_mvp,
                camera_pos=all_campos,
                env=ENV,
                materials=materials,
                render_size=render_size, 
                chunk_size=20, 
                is_flexicubes=True,
            )
            normals = (torch.nn.functional.normalize(normals) + 1) / 2
            normals = normals * alphas + (1-alphas)
            all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
                
            # breakpoint()
            save_video(
                all_frames,
                video_path_idx,
                fps=30,
            )
            print(f"Video saved to {video_path_idx}")

        if render_azimuths is not None and render_elevations is not None and render_radius is not None:
            render_size = infer_config.render_resolution
            ENV = load_mipmap("models/lrm/env_mipmap/6")
            materials = (0.0,0.9)
            all_mv, all_mvp, all_campos, identity_mv = get_render_cameras_frames(
                batch_size=1, 
                radius=render_radius, 
                azimuths=render_azimuths, 
                elevations=render_elevations,
                fov=30
            )
            frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
                model, 
                planes, 
                render_cameras=all_mvp,
                camera_pos=all_campos,
                env=ENV,
                materials=materials,
                render_size=render_size, 
                render_mv = all_mv,
                local_normal=True,
                identity_mv=identity_mv,
            )
        else:
            normals = None
            frames = None
            albedos = None
            
    return vertices, faces, normals, frames, albedos


def transform_normal(input_normal, azimuths_deg, elevations_deg, radius=4.5, is_global_to_local=False):
    """
    input_normal: in range [-1, 1], shape (b c h w)
    """

    input_normal = input_normal.permute(0, 2, 3, 1).cpu()

    azimuths_deg = np.array(azimuths_deg)
    elevations_deg = np.array(elevations_deg)

    if is_global_to_local:
        local_normal = normal_transfer.trans_global_2_local(input_normal, azimuths_deg, elevations_deg)
        return local_normal.permute(0, 3, 1, 2)
    else:
        global_normal = normal_transfer.trans_local_2_global(input_normal, azimuths_deg, elevations_deg, radius=radius, for_lotus=False)
        global_normal[..., 0] *= -1
        return global_normal.permute(0, 3, 1, 2)

def local_normal_global_transform(local_normal_images,azimuths_deg,elevations_deg):
    if local_normal_images.min() >= 0:
        local_normal = local_normal_images.float() * 2 - 1
    else:
        local_normal = local_normal_images.float()
    global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
    global_normal[...,0] *= -1
    global_normal = (global_normal + 1) / 2
    global_normal = global_normal.permute(0, 3, 1, 2)
    return global_normal

def main():
    image_pth = "examples/蓝色小怪物.webp"
    save_dir_path = os.path.join(save_dir, image_pth.split("/")[-1].split(".")[0])
    os.makedirs(save_dir_path, exist_ok=True)
    input_image = Image.open(image_pth)
    # if not args.no_rembg:
    input_image = remove_background(input_image, rembg_session)
    input_image = resize_foreground(input_image, 0.85)

    # generate caption
    image_caption = run_captioning(image_pth)

    # generate multi-view images
    output_image = multi_view_rgb_generation(input_image)

    # lrm reconstructions
    rgb_multi_view = np.asarray(output_image, dtype=np.float32) / 255.0
    rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float()     # (3, 1024, 2048)
    rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2)        # (8, 3, 512, 512)

    input_cameras = get_custom_zero123plus_input_cameras(batch_size=1, radius=3.5, fov=30).to(device)

    vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
                                        lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', 
                                          export_texmap=False, if_save_video=False, render_azimuths=isomer_azimuths, 
                                          render_elevations=isomer_elevations, render_radius=isomer_radius, render_fov=30)

    vertices = torch.from_numpy(vertices).to(device)
    faces = torch.from_numpy(faces).to(device)
    vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
    vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]


    # lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
    lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_multi_view[[3,0,1,2]].cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
    # rgb_multi_view[[3,0,1,2]] : (B,3,H,W)
    # lrm_multi_view_normals : (B,3,H,W)
    # combined_images = 0.5 * rgb_multi_view[[3,0,1,2]].cpu() + 0.5 * (lrm_multi_view_normals.cpu() + 1) / 2
    # torchvision.utils.save_image(combined_images, os.path.join("debug_output", 'combined.png'))
    # breakpoint()
    # Use the low-quality controlnet by default, feel free to try the others
    control_image = [lrm_3D_bundle_image * 2 - 1]
    control_mode = ['tile']
    control_guidance_start = [0.0]
    control_guidance_end = [0.3]
    controlnet_conditioning_scale = [0.8]
    
    flux_pipe.controlnet = FluxMultiControlNetModel([flux_controlnet for _ in control_mode])
    # breakpoint()
    rgb_normal_grid = multi_view_rgb_normal_generation_with_controlnet(
        prompt= ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', image_caption]),
        image=lrm_3D_bundle_image,
        strength=0.6,
        control_image=control_image, 
        control_mode=control_mode,
        control_guidance_start=control_guidance_start,
        control_guidance_end=control_guidance_end,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        lora_scale=1.0
    ) # noted that rgb_normal_grid is a (b, h, w, c) numpy array
    
    rgb_normal_grid = torch.from_numpy(rgb_normal_grid).contiguous().float()
    rgb_normal_grid = rearrange(rgb_normal_grid.squeeze(0), '(n h) (m w) c-> (n m) c h w', n=2, m=4)        # (8, 3, 512, 512)
    rgb_multi_view = rgb_normal_grid[:4, :3, :, :].cuda()
    normal_multi_view = rgb_normal_grid[4:, :3, :, :].cuda()
    multi_view_mask = get_background(normal_multi_view).cuda()
    rgb_multi_view = rgb_multi_view * multi_view_mask + (1-multi_view_mask)

    # local normal to global normal
    global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1).cpu(), isomer_azimuths, isomer_elevations).cuda()
    
    global_normal = global_normal * multi_view_mask + (1-multi_view_mask)

    global_normal = global_normal.permute(0,2,3,1)
    multi_view_mask = multi_view_mask.squeeze(1)
    rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
    # global_normal: B,H,W,3
    # multi_view_mask: B,H,W
    # rgb_multi_view: B,H,W,3


    meshes = reconstruction(
        normal_pils=global_normal, 
        masks=multi_view_mask, 
        weights=isomer_geo_weights, 
        fov=30, 
        radius=isomer_radius, 
        camera_angles_azi=isomer_azimuths, 
        camera_angles_ele=isomer_elevations, 
        expansion_weight_stage1=0.1,
        init_type="file",
        init_verts=vertices,
        init_faces=faces,
        stage1_steps=0,
        stage2_steps=50,
        start_edge_len_stage1=0.1,
        end_edge_len_stage1=0.02,
        start_edge_len_stage2=0.02,
        end_edge_len_stage2=0.005,
    )

    save_glb_addr = projection(
        meshes=meshes,
        masks=multi_view_mask,
        images=rgb_multi_view,
        azimuths=isomer_azimuths, 
        elevations=isomer_elevations, 
        weights=isomer_color_weights,
        fov=30,
        radius=isomer_radius,
        save_dir=f"{save_dir_path}/ISOMER/",
    )
    print(f'saved to {save_glb_addr}')



if __name__ == '__main__':
    main()