File size: 14,621 Bytes
b5eac81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from functools import reduce
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from torch.backends.cuda import sdp_kernel
from packaging import version

from dac.nn.layers import Snake1d

class ResidualBlock(nn.Module):
    def __init__(self, main, skip=None):
        super().__init__()
        self.main = nn.Sequential(*main)
        self.skip = skip if skip else nn.Identity()

    def forward(self, input):
        return self.main(input) + self.skip(input)

class ResConvBlock(ResidualBlock):
    def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
        skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
        super().__init__([
            nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
            nn.GroupNorm(1, c_mid),
            Snake1d(c_mid) if use_snake else nn.GELU(),
            nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
            nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
            (Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
        ], skip)

class SelfAttention1d(nn.Module):
    def __init__(self, c_in, n_head=1, dropout_rate=0.):
        super().__init__()
        assert c_in % n_head == 0
        self.norm = nn.GroupNorm(1, c_in)
        self.n_head = n_head
        self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
        self.out_proj = nn.Conv1d(c_in, c_in, 1)
        self.dropout = nn.Dropout(dropout_rate, inplace=True)

        self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')

        if not self.use_flash:
            return

        device_properties = torch.cuda.get_device_properties(torch.device('cuda'))

        if device_properties.major == 8 and device_properties.minor == 0:
            # Use flash attention for A100 GPUs
            self.sdp_kernel_config = (True, False, False)
        else:
            # Don't use flash attention for other GPUs
            self.sdp_kernel_config = (False, True, True)

    def forward(self, input):
        n, c, s = input.shape
        qkv = self.qkv_proj(self.norm(input))
        qkv = qkv.view(
            [n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
        q, k, v = qkv.chunk(3, dim=1)
        scale = k.shape[3]**-0.25

        if self.use_flash:
            with sdp_kernel(*self.sdp_kernel_config):
                y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
        else:
            att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
            y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])


        return input + self.dropout(self.out_proj(y))

class SkipBlock(nn.Module):
    def __init__(self, *main):
        super().__init__()
        self.main = nn.Sequential(*main)

    def forward(self, input):
        return torch.cat([self.main(input), input], dim=1)

class FourierFeatures(nn.Module):
    def __init__(self, in_features, out_features, std=1.):
        super().__init__()
        assert out_features % 2 == 0
        self.weight = nn.Parameter(torch.randn(
            [out_features // 2, in_features]) * std)

    def forward(self, input):
        f = 2 * math.pi * input @ self.weight.T
        return torch.cat([f.cos(), f.sin()], dim=-1)

def expand_to_planes(input, shape):
    return input[..., None].repeat([1, 1, shape[2]])

_kernels = {
    'linear':
        [1 / 8, 3 / 8, 3 / 8, 1 / 8],
    'cubic': 
        [-0.01171875, -0.03515625, 0.11328125, 0.43359375,
        0.43359375, 0.11328125, -0.03515625, -0.01171875],
    'lanczos3': 
        [0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
        -0.066637322306633, 0.13550527393817902, 0.44638532400131226,
        0.44638532400131226, 0.13550527393817902, -0.066637322306633,
        -0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
}

class Downsample1d(nn.Module):
    def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel])
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer('kernel', kernel_1d)
        self.channels_last = channels_last
    
    def forward(self, x):
        if self.channels_last:
            x = x.permute(0, 2, 1)
        x = F.pad(x, (self.pad,) * 2, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        x = F.conv1d(x, weight, stride=2)
        if self.channels_last:
            x = x.permute(0, 2, 1)
        return x


class Upsample1d(nn.Module):
    def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel]) * 2
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer('kernel', kernel_1d)
        self.channels_last = channels_last
    
    def forward(self, x):
        if self.channels_last:
            x = x.permute(0, 2, 1)
        x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
        if self.channels_last:
            x = x.permute(0, 2, 1)
        return x
        
def Downsample1d_2(
    in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
) -> nn.Module:
    assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"

    return nn.Conv1d(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=factor * kernel_multiplier + 1,
        stride=factor,
        padding=factor * (kernel_multiplier // 2),
    )


def Upsample1d_2(
    in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
) -> nn.Module:

    if factor == 1:
        return nn.Conv1d(
            in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
        )

    if use_nearest:
        return nn.Sequential(
            nn.Upsample(scale_factor=factor, mode="nearest"),
            nn.Conv1d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=3,
                padding=1,
            ),
        )
    else:
        return nn.ConvTranspose1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=factor * 2,
            stride=factor,
            padding=factor // 2 + factor % 2,
            output_padding=factor % 2,
        )

def zero_init(layer):
    nn.init.zeros_(layer.weight)
    if layer.bias is not None:
        nn.init.zeros_(layer.bias)
    return layer

def rms_norm(x, scale, eps):
    dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
    mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
    scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
    return x * scale.to(x.dtype)

#rms_norm = torch.compile(rms_norm)

class AdaRMSNorm(nn.Module):
    def __init__(self, features, cond_features, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
  
    def extra_repr(self):
        return f"eps={self.eps},"

    def forward(self, x, cond):
        return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
    
def normalize(x, eps=1e-4):
    dim = list(range(1, x.ndim))
    n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
    alpha = np.sqrt(n.numel() / x.numel())
    return x / torch.add(eps, n, alpha=alpha)

class ForcedWNConv1d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1):
        super().__init__()
        self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))

    def forward(self, x):
        if self.training:
            with torch.no_grad():
                self.weight.copy_(normalize(self.weight))
        
        fan_in = self.weight[0].numel()

        w = normalize(self.weight) / math.sqrt(fan_in)

        return F.conv1d(x, w, padding='same')
        
# Kernels

use_compile = True

def compile(function, *args, **kwargs):
    if not use_compile:
        return function
    try:
        return torch.compile(function, *args, **kwargs)
    except RuntimeError:
        return function


@compile
def linear_geglu(x, weight, bias=None):
    x = x @ weight.mT
    if bias is not None:
        x = x + bias
    x, gate = x.chunk(2, dim=-1)
    return x * F.gelu(gate)


@compile
def rms_norm(x, scale, eps):
    dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
    mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
    scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
    return x * scale.to(x.dtype)

# Layers

class LinearGEGLU(nn.Linear):
    def __init__(self, in_features, out_features, bias=True):
        super().__init__(in_features, out_features * 2, bias=bias)
        self.out_features = out_features

    def forward(self, x):
        return linear_geglu(x, self.weight, self.bias)


class RMSNorm(nn.Module):
    def __init__(self, shape, fix_scale = False, eps=1e-6):
        super().__init__()
        self.eps = eps

        if fix_scale:
            self.register_buffer("scale", torch.ones(shape))
        else:
            self.scale = nn.Parameter(torch.ones(shape))

    def extra_repr(self):
        return f"shape={tuple(self.scale.shape)}, eps={self.eps}"

    def forward(self, x):
        return rms_norm(x, self.scale, self.eps)    

def snake_beta(x, alpha, beta):
    return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)

# try:
#     snake_beta = torch.compile(snake_beta)
# except RuntimeError:
#     pass

# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
# License available in LICENSES/LICENSE_NVIDIA.txt
class SnakeBeta(nn.Module):

    def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
        super(SnakeBeta, self).__init__()
        self.in_features = in_features

        # initialize alpha
        self.alpha_logscale = alpha_logscale
        if self.alpha_logscale: # log scale alphas initialized to zeros
            self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
            self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
        else: # linear scale alphas initialized to ones
            self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
            self.beta = nn.Parameter(torch.ones(in_features) * alpha)

        self.alpha.requires_grad = alpha_trainable
        self.beta.requires_grad = alpha_trainable

        self.no_div_by_zero = 0.000000001

    def forward(self, x):
        alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
        beta = self.beta.unsqueeze(0).unsqueeze(-1)
        if self.alpha_logscale:
            alpha = torch.exp(alpha)
            beta = torch.exp(beta)
        x = snake_beta(x, alpha, beta)

        return x

class ChannelLastConv1d(nn.Conv1d):

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.permute(0, 2, 1)
        x = super().forward(x)
        x = x.permute(0, 2, 1)
        return x


# https://github.com/Stability-AI/sd3-ref
class MLP(nn.Module):

    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int = 256,
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.
            multiple_of (int): Value to ensure hidden dimension is a multiple of this value.

        Attributes:
            w1 (ColumnParallelLinear): Linear transformation for the first layer.
            w2 (RowParallelLinear): Linear transformation for the second layer.
            w3 (ColumnParallelLinear): Linear transformation for the third layer.

        """
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class ConvMLP(nn.Module):

    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int = 256,
        kernel_size: int = 3,
        padding: int = 1,
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.
            multiple_of (int): Value to ensure hidden dimension is a multiple of this value.

        Attributes:
            w1 (ColumnParallelLinear): Linear transformation for the first layer.
            w2 (RowParallelLinear): Linear transformation for the second layer.
            w3 (ColumnParallelLinear): Linear transformation for the third layer.

        """
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = ChannelLastConv1d(dim,
                                    hidden_dim,
                                    bias=False,
                                    kernel_size=kernel_size,
                                    padding=padding)
        self.w2 = ChannelLastConv1d(hidden_dim,
                                    dim,
                                    bias=False,
                                    kernel_size=kernel_size,
                                    padding=padding)
        self.w3 = ChannelLastConv1d(dim,
                                    hidden_dim,
                                    bias=False,
                                    kernel_size=kernel_size,
                                    padding=padding)

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))