File size: 10,496 Bytes
19574d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

import tensorflow as tf
import numpy as np

from transformers import BertTokenizer
tokenizer_en = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer_cn = BertTokenizer.from_pretrained("bert-base-chinese")
MAX_TOKENIZE_LENGTH = 128
EMBEDDING_DEPTH = 256

def positional_encoding(length, depth):
    depth = depth/2
    positions = np.arange(length)[:, np.newaxis]     # (seq, 1)
    depths = np.arange(depth)[np.newaxis, :]/depth   # (1, depth)
    
    angle_rates = 1 / (10000**depths)         # (1, depth)
    angle_rads = positions * angle_rates      # (pos, depth)
    
    pos_encoding = np.concatenate(
        [np.sin(angle_rads), np.cos(angle_rads)],
        axis=-1) 
    return tf.cast(pos_encoding, dtype=tf.float32)

class PositionalEmbedding(tf.keras.layers.Layer):
    def __init__(self, vocab_size, d_model):
        super().__init__()
        self.d_model = d_model
        self.embedding = tf.keras.layers.Embedding(input_dim=vocab_size, output_dim=d_model, mask_zero=True) 
        self.pos_encoding = positional_encoding(length=MAX_TOKENIZE_LENGTH, depth=d_model)

    def compute_mask(self, *args, **kwargs):
        return self.embedding.compute_mask(*args, **kwargs)

    def call(self, x):
        length = tf.shape(x)[1]
        x = self.embedding(x)
        # This factor sets the relative scale of the embedding and positonal_encoding.
        x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
        x = x + self.pos_encoding[tf.newaxis, :length, :]
        return x

class BaseAttention(tf.keras.layers.Layer):
    def __init__(self, **kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
        self.layernorm = tf.keras.layers.LayerNormalization()
        self.add = tf.keras.layers.Add()

class CrossAttention(BaseAttention):
    def call(self, x, context): #x = query, content = key,value pairs
        attn_output, attn_scores = self.mha(
            query=x,
            key=context,
            value=context,
            return_attention_scores=True)

        # Cache the attention scores for plotting later.
        self.last_attn_scores = attn_scores

        x = self.add([x, attn_output])
        x = self.layernorm(x)

        return x

class GlobalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x

class CausalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x,
            use_causal_mask = True)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x

class FeedForward(tf.keras.layers.Layer):
    def __init__(self, d_model, dff, dropout_rate=0.1):
        super().__init__()
        self.seq = tf.keras.Sequential([
          tf.keras.layers.Dense(dff, activation='relu'),
          tf.keras.layers.Dense(d_model),
          tf.keras.layers.Dropout(dropout_rate)
        ])
        self.add = tf.keras.layers.Add()
        self.layer_norm = tf.keras.layers.LayerNormalization()

    def call(self, x):
        x = self.add([x, self.seq(x)])
        x = self.layer_norm(x) 
        return x

class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self,*, d_model, num_heads, dff, dropout_rate=0.1):
        super().__init__()

        self.self_attention = GlobalSelfAttention(
            num_heads=num_heads,
            key_dim=d_model,
            dropout=dropout_rate)

        self.ffn = FeedForward(d_model, dff)

    def call(self, x):
        x = self.self_attention(x)
        x = self.ffn(x)
        return x

class DecoderLayer(tf.keras.layers.Layer):
    def __init__(self,
               *,
               d_model,
               num_heads,
               dff,
               dropout_rate=0.1):
        super(DecoderLayer, self).__init__()

        self.causal_self_attention = CausalSelfAttention(
            num_heads=num_heads,
            key_dim=d_model,
            dropout=dropout_rate)

        self.cross_attention = CrossAttention(
            num_heads=num_heads,
            key_dim=d_model,
            dropout=dropout_rate)

        self.ffn = FeedForward(d_model, dff)

    def call(self, x, context):
        x = self.causal_self_attention(x=x)
        x = self.cross_attention(x=x, context=context)

        # Cache the last attention scores for plotting later
        self.last_attn_scores = self.cross_attention.last_attn_scores

        x = self.ffn(x)  # Shape `(batch_size, seq_len, d_model)`.
        return x
         
class Encoder(tf.keras.layers.Layer):
    def __init__(self, *, num_layers, d_model, num_heads,
               dff, vocab_size, dropout_rate=0.1):
        super().__init__()

        self.d_model = d_model
        self.num_layers = num_layers

        self.pos_embedding = PositionalEmbedding(
            vocab_size=vocab_size, d_model=d_model)

        self.enc_layers = [
            EncoderLayer(d_model=d_model,
                         num_heads=num_heads,
                         dff=dff,
                         dropout_rate=dropout_rate)
            for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(dropout_rate)

    def call(self, x):
        # `x` is token-IDs shape: (batch, seq_len)
        x = self.pos_embedding(x)  # Shape `(batch_size, seq_len, d_model)`.

        # Add dropout.
        x = self.dropout(x)

        for i in range(self.num_layers):
            x = self.enc_layers[i](x)

        return x  # Shape `(batch_size, seq_len, d_model)`.

class Decoder(tf.keras.layers.Layer):
    def __init__(self, *, num_layers, d_model, num_heads, dff, vocab_size,
               dropout_rate=0.1):
        super(Decoder, self).__init__()

        self.d_model = d_model
        self.num_layers = num_layers

        self.pos_embedding = PositionalEmbedding(vocab_size=vocab_size,
                                                 d_model=d_model)
        self.dropout = tf.keras.layers.Dropout(dropout_rate)
        self.dec_layers = [
            DecoderLayer(d_model=d_model, num_heads=num_heads,
                         dff=dff, dropout_rate=dropout_rate)
            for _ in range(num_layers)]

        self.last_attn_scores = None

    def call(self, x, context):
        # `x` is token-IDs shape (batch, target_seq_len)
        x = self.pos_embedding(x)  # (batch_size, target_seq_len, d_model)

        x = self.dropout(x)

        for i in range(self.num_layers):
            x  = self.dec_layers[i](x, context)

        self.last_attn_scores = self.dec_layers[-1].last_attn_scores

        # The shape of x is (batch_size, target_seq_len, d_model).
        return x

# @tf.keras.saving.register_keras_serializable()
class Transformer(tf.keras.Model):
    def __init__(self, *, num_layers, d_model, num_heads, dff,
               input_vocab_size, target_vocab_size, dropout_rate=0.1):
        super().__init__()
        self.encoder = Encoder(num_layers=num_layers, d_model=d_model,
                               num_heads=num_heads, dff=dff,
                               vocab_size=input_vocab_size,
                               dropout_rate=dropout_rate)

        self.decoder = Decoder(num_layers=num_layers, d_model=d_model,
                               num_heads=num_heads, dff=dff,
                               vocab_size=target_vocab_size,
                               dropout_rate=dropout_rate)

        self.final_layer = tf.keras.layers.Dense(target_vocab_size)

    def call(self, inputs):
        # To use a Keras model with `.fit` you must pass all your inputs in the
        # first argument.
        context, x  = inputs

        context = self.encoder(context)  # (batch_size, context_len, d_model)

        x = self.decoder(x, context)  # (batch_size, target_len, d_model)

        # Final linear layer output.
        logits = self.final_layer(x)  # (batch_size, target_len, target_vocab_size)

        try:
          # Drop the keras mask, so it doesn't scale the losses/metrics.
          # b/250038731
            del logits._keras_mask
        except AttributeError:
            pass

        # Return the final output and the attention weights.
        return logits
    
# @tf.keras.saving.register_keras_serializable()
# class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
#     def __init__(self, d_model, warmup_steps=4000):
#         super().__init__()

#         self.d_model = d_model
#         self.d_model = tf.cast(self.d_model, tf.float32)

#         self.warmup_steps = warmup_steps

#     def __call__(self, step):
#         step = tf.cast(step, dtype=tf.float32)
#         arg1 = tf.math.rsqrt(step)
#         arg2 = step * (self.warmup_steps ** -1.5)

#         return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
    
#     def get_config(self):
#         return {
#             'd_model': int(self.d_model),
#             'warmup_steps': int(self.warmup_steps)
#         }

# # learning_rate = CustomSchedule(EMBEDDING_DEPTH)

# # @tf.keras.saving.register_keras_serializable()
# class CustomAdam(tf.keras.optimizers.Adam):
#     def __init__(self, custom_param, **kwargs):
#         super(CustomAdam, self).__init__(**kwargs)
#         self.custom_param = custom_param #this is the learning rate (custom schedule)

#     def get_config(self):
#         config = super(CustomAdam, self).get_config()
#         config.update({
#             'custom_param': self.custom_param
#         })
#         return config

# # optimizer = CustomAdam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)

# # @tf.keras.saving.register_keras_serializable()
# def masked_loss(label, pred):
#     mask = label != 0
#     loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
#     from_logits=True, reduction='none')
#     loss = loss_object(label, pred)

#     mask = tf.cast(mask, dtype=loss.dtype)
#     loss *= mask

#     loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
#     return loss

# # @tf.keras.saving.register_keras_serializable()
# def masked_accuracy(label, pred):
#     pred = tf.argmax(pred, axis=2)
#     label = tf.cast(label, pred.dtype)
#     match = label == pred

#     mask = label != 0

#     match = match & mask

#     match = tf.cast(match, dtype=tf.float32)
#     mask = tf.cast(mask, dtype=tf.float32)
#     return tf.reduce_sum(match)/tf.reduce_sum(mask)