File size: 13,046 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification
from torch.optim import Adam
from torch.nn import CrossEntropyLoss
from typing import Dict, List, Optional, Any
from utils.common.data_record import read_json
from .global_bert_tokenizer import get_tokenizer


# 自定义数据集类
class UniversalASC19DomainsDataset(Dataset):
    def __init__(self, root_dir: str, split: str, transform: Any, 
                 classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        
        assert transform is None
        
        self.tokenizer = get_tokenizer()  # 传入tokenizer对象
        self.texts = []
        self.labels = []
        self.max_length = 512  # 设置文本的最大长度

        json_file_path = os.path.join(root_dir, f'{split if split != "val" else "dev"}.json')
        anns = read_json(json_file_path)
        
        label_map = {'-': 0, '+': 1, 'negative': 0, 'positive': 1}
        
        ignore_cls_indexes = [classes.index(c) for c in ignore_classes]
        
        for v in anns.values():
            if v['polarity'] not in label_map.keys():
                continue
            
            cls = label_map[v['polarity']]
            
            if cls in ignore_cls_indexes:
                continue
            
            self.texts += [v['sentence']]
            self.labels += [idx_map[cls] if idx_map is not None else cls]

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]
        
        encoded_input = self.tokenizer.encode_plus(
            text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        
        x = {key: tensor.squeeze(0) for key, tensor in encoded_input.items()}
        x['return_dict'] = False
        return x, torch.tensor(label)


from ..ab_dataset import ABDataset
from ..registery import dataset_register

@dataset_register(
    name='HL5Domains-ApexAD2600Progressive', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class HL5Domains_ApexAD2600Progressive(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='HL5Domains-CanonG3', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class HL5Domains_CanonG3(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class HL5Domains_CreativeLabsNomadJukeboxZenXtra40GB(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='HL5Domains-NikonCoolpix4300', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class HL5Domains_NikonCoolpix4300(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='HL5Domains-Nokia6610', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class HL5Domains_Nokia6610(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    

@dataset_register(
    name='Liu3Domains-Computer', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Liu3Domains_Computer(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='Liu3Domains-Router', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Liu3Domains_Router(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='Liu3Domains-Speaker', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Liu3Domains_Speaker(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    

# import os 
# for domain in os.listdir('/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing9Domains/asc'):
#     print(f"""
# @dataset_register(
#     name='Ding9Domains-{domain}', 
#     classes=['negative', 'positive'], 
#     task_type='Sentiment Classification',
#     object_type='Emotion',
#     class_aliases=[],
#     shift_type=None
# )
# class Ding9Domains_{domain}(ABDataset):    
#     def create_dataset(self, root_dir: str, split: str, transform, 
#                        classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
#         return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
#           """)

@dataset_register(
    name='Ding9Domains-DiaperChamp', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_DiaperChamp(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-Norton', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_Norton(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-LinksysRouter', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_LinksysRouter(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-MicroMP3', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_MicroMP3(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-Nokia6600', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_Nokia6600(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-CanonPowerShotSD500', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_CanonPowerShotSD500(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-ipod', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_ipod(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-HitachiRouter', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_HitachiRouter(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
          

@dataset_register(
    name='Ding9Domains-CanonS100', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class Ding9Domains_CanonS100(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    


@dataset_register(
    name='SemEval-Laptop', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class SemEval_Laptop(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)
    
@dataset_register(
    name='SemEval-Rest', 
    classes=['negative', 'positive'], 
    task_type='Sentiment Classification',
    object_type='Emotion',
    class_aliases=[],
    shift_type=None
)
class SemEval_Rest(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform, 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        return UniversalASC19DomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map)