File size: 7,312 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
from utils.dl.common.env import set_random_seed
set_random_seed(1)

from typing import List
from data.dataloader import build_dataloader
from data import Scenario
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from new_impl.cv.feat_align.mmd import mmd_rbf
from new_impl.cv.base.alg import BaseAlg
import shutil
from new_impl.cv.base.model import BaseModel


def elasticfm_da(apps_name: List[str],
                 scenarios: List[Scenario], 
                 elasticfm_models: List[ElasticDNN_OnlineModel], 
                 da_algs: List[BaseAlg], 
                 da_alg_hyps: List[dict],
                 da_models: List[BaseModel],
                 device,
                 settings,
                 __entry_file__,
                 tag=None,
                 collate_fn=None):
    
    involve_fm = settings['involve_fm']
    
    tasks_name = apps_name
    online_models = elasticfm_models
    
    log_dir = get_res_save_dir(__entry_file__, tag=tag)
    tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False)
    res = []
    global_avg_after_acc = 0.
    global_iter = 0
    
    for domain_index, _ in enumerate(scenarios[0].target_domains_order):
        avg_before_acc, avg_after_acc = 0., 0.
        cur_res = {}
        
        for task_name, online_model, scenario, da_alg, da_model, da_alg_hyp in zip(tasks_name, online_models, scenarios, da_algs, da_models, da_alg_hyps):
            cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
            if cur_target_domain_name in da_alg_hyp:
                da_alg_hyp = da_alg_hyp[cur_target_domain_name]
                logger.info(f'use dataset-specific hyps')    
            online_model.set_sd_sparsity(da_alg_hyp['sd_sparsity'])
            if 'transform' in da_alg_hyp.keys():
                sd, unpruned_indexes_of_layers = online_model.generate_sd_by_target_samples(scenario.get_online_cur_domain_samples_for_training(da_alg_hyp['train_batch_size'], da_alg_hyp['transform'], collate_fn=collate_fn))
            else:
                sd, unpruned_indexes_of_layers = online_model.generate_sd_by_target_samples(scenario.get_online_cur_domain_samples_for_training(da_alg_hyp['train_batch_size'], collate_fn=collate_fn))

            tmp_sd_path = os.path.join(log_dir, 'tmp_sd_model.pt')
            # tmp_sd_path = 'new_impl/cv/glip/object_detection/results/det_online.py/20231127/999998-175207-results/tmp_sd_model.pt'
            torch.save({'main': sd}, tmp_sd_path)
            
            if 'cls' not in task_name and 'pos' not in task_name and 'vqa' not in task_name:
                da_model_args = [f'{task_name}/{domain_index}', 
                        tmp_sd_path, 
                        device,
                        scenario.num_classes]
            else:
                da_model_args = [f'{task_name}/{domain_index}', 
                        tmp_sd_path, 
                        device]
            da_metrics, after_da_model = da_alg(
                {'main': da_model(*da_model_args)}, 
                os.path.join(log_dir, f'{task_name}/{domain_index}')
            ).run(scenario, {_k: _v for _k, _v in da_alg_hyp.items() if _k != 'sd_sparsity'}, collate_fn=collate_fn)
            os.remove(tmp_sd_path)
            
            if domain_index > 0:
                shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes'))

            online_model.sd_feedback_to_md(after_da_model['main'].models_dict['main'], unpruned_indexes_of_layers)
            online_model.md_feedback_to_self_fm()
            #print(online_model.models_dict['sd'])
            accs = da_metrics['accs']
            before_acc = accs[0]['acc']
            after_acc = accs[-1]['acc']
            
            avg_before_acc += before_acc
            avg_after_acc += after_acc
            
            for _acc in accs:
                tb_writer.add_scalar(f'total_acc', _acc['acc'], _acc['iter'] + global_iter) # TODO: bug here
            global_iter += _acc['iter'] + 1
            
            tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index)
            tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index)
            
            scenario.next_domain()
            
            logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> "
                        f"{after_acc:.4f} ({da_metrics['time']:.2f}s)")
            cur_res[task_name] = da_metrics
        
        if involve_fm:
            for online_model in online_models:
                online_model.aggregate_fms_to_self_fm([m.models_dict['fm'] for m in online_models])
            for online_model in online_models:
                online_model.fm_feedback_to_md()
        
        avg_before_acc /= len(tasks_name)
        avg_after_acc /= len(tasks_name)
        tb_writer.add_scalars(f'accs/apps_avg', dict(before=avg_before_acc, after=avg_after_acc), domain_index)
        logger.info(f"--> domain {domain_index}, avg_acc: {avg_before_acc:.4f} -> "
                        f"{avg_after_acc:.4f}")
        res += [cur_res]
        
        global_avg_after_acc += avg_after_acc
        
        write_json(os.path.join(log_dir, 'res.json'), res, backup=False)

    global_avg_after_acc /= (domain_index + 1)
    logger.info(f'-----> final metric: {global_avg_after_acc:.4f}')
    write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False)
    
    
    
def init_online_model(fm_models_dict_path, md_models_dict_path, task_name, __entry_file__):
    fm_models = torch.load(fm_models_dict_path)
    md_models = torch.load(md_models_dict_path)
    
    online_models_dict_path = save_models_dict_for_init({
        'fm': fm_models['main'],
        'md': md_models['main'],
        'sd': None,
        'indexes': md_models['indexes'],
        'bn_stats': md_models['bn_stats']
    }, __entry_file__, task_name)
    return online_models_dict_path