Spaces:
Sleeping
Sleeping
File size: 11,346 Bytes
ba1b871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import pickle
import numpy as np
import shutil
mapping_dataset_directory = {'ActvityNet_hico_style_batch1':'ActivityNet_hico_batch1','charadesEgo_hico_style':'charadesego_frame', 'HAG_hico_style_new':'hag_frame','HACS_hico_style':'hacs_frame','kinetics_hico_style':'kinetics_dataset/k700-2020/train'}
train_pkl = "/home/lihong/chenyuanjie/Sandwich/Data/B123_train_KIN-FULL_with_node.pkl"
split_test_path = "/home/lihong/chenyuanjie/Sandwich/Data/B123_test_KIN-FULL_with_node.pkl"
with open(split_test_path, 'rb') as f:
data = pickle.load(f)
# split_test_pkl = []
# action_num_dict = {}
# for data_idx, data_item in enumerate(data):
# if data_item[0] in mapping_dataset_directory.keys():
# dataset = mapping_dataset_directory[data_item[0]]
# else:
# dataset = data_item[0]
# orig_label = data_item[2]
# node_labels = data_item[3]
# for nod_lab in node_labels:
# if nod_lab in action_num_dict.keys():
# action_num_dict[nod_lab] += 1
# else:
# action_num_dict[nod_lab] = 1
# if data_idx %1000 == 0:
# print(len(data),data_idx)
# current_action_num_dict = {}
# dataset_list = []
# for data_idx, data_item in enumerate(data):
# if data_item[0] in mapping_dataset_directory.keys():
# dataset = mapping_dataset_directory[data_item[0]]
# else:
# dataset = data_item[0]
# image_path = '/data/xiaoqian/Images/' + dataset + '/' + data_item[1]
# if not os.path.isfile(image_path):
# if not dataset in dataset_list:
# dataset_list.append(dataset)
# continue
# orig_label = data_item[2]
# node_labels = data_item[3]
# flag = False
# for nod_lab in node_labels:
# if nod_lab in current_action_num_dict.keys():
# if current_action_num_dict[nod_lab] < action_num_dict[nod_lab] * 0.1 and not flag:
# split_test_pkl.append(data_item)
# flag = True
# current_action_num_dict[nod_lab] += 1
# else:
# split_test_pkl.append(data_item)
# flag = True
# current_action_num_dict[nod_lab] = 1
# if data_idx % 1000 == 0:
# print(len(data),data_idx)
# print(action_num_dict, current_action_num_dict)
# with open(split_test_path, 'wb') as f:
# pickle.dump(split_test_pkl, f)
# exit()
## mapping node to idx
mapping_node_index = pickle.load(open("/home/lihong/chenyuanjie/Sandwich/Data/mapping_node_index.pkl", "rb"))
verbnet_topology = pickle.load(open("/home/lihong/chenyuanjie/Sandwich/Data/verbnet_topology_898.pkl", "rb"))
Father2Son, objects = verbnet_topology["Father2Son"], verbnet_topology["objects"]
objects = np.array(objects)
objects_290 = objects[mapping_node_index]
object_to_idx = {obj: idx for idx, obj in enumerate(objects_290)}
# filtered_objects = [obj.split("-")[0] for obj in objects_290]
selected_list = ["hit", "push","run","dress","drive","cook","throw","build","shake","cut"]
true_selected_list = ["hit-18.1","push-12","run-51.3.2","dress-41.1.1-1-1","drive-11.5","cooking-45.3","throw-17.1-1","build-26.1","shake-22.3-2","cut-21.1-1"]
true_selected_list_id = [object_to_idx[node] for node in true_selected_list]
true_selected_paired_list = ['run-51.3.2_hit-18.1', 'drive-11.5_dress-41.1.1-1-1', 'cooking-45.3_build-26.1','shake-22.3-2_cut-21.1-1'] #,'throw-17.1-1_push-12'
true_label = {}
# {'hit-18.1cut-21.1-1': 86808, 'hit-18.1drive-11.5': 14935, 'hit-18.1run-51.3.2': 34237}
# {'run-51.3.2run-51.3.2': 341324, 'run-51.3.2hit-18.1': 34237, 'run-51.3.2cut-21.1-1': 20389}
# {'dress-41.1.1-1-1dress-41.1.1-1-1': 470063, 'dress-41.1.1-1-1run-51.3.2': 63862, 'dress-41.1.1-1-1cut-21.1-1': 47727, 'dress-41.1.1-1-1drive-11.5': 24965, 'dress-41.1.1-1-1hit-18.1': 23118, 'dress-41.1.1-1-1push-12': 11982, 'dress-41.1.1-1-1cooking-45.3': 469, 'dress-41.1.1-1-1build-26.1': 306}
# {'drive-11.5drive-11.5': 238175, 'drive-11.5build-26.1': 15223, 'drive-11.5hit-18.1': 14935, 'drive-11.5cut-21.1-1': 30031, 'drive-11.5dress-41.1.1-1-1': 24965}
# {'cooking-45.3cooking-45.3': 68577, 'cooking-45.3build-26.1': 37668, 'cooking-45.3cut-21.1-1': 15072, 'cooking-45.3dress-41.1.1-1-1': 469}
# {'throw-17.1-1throw-17.1-1': 394887, 'throw-17.1-1hit-18.1': 92553, 'throw-17.1-1drive-11.5': 30348, 'throw-17.1-1dress-41.1.1-1-1': 97911, 'throw-17.1-1run-51.3.2': 30097, 'throw-17.1-1push-12': 20854, 'throw-17.1-1cut-21.1-1': 20714}
# {'build-26.1cooking-45.3': 37668, 'build-26.1build-26.1': 95743, 'build-26.1drive-11.5': 15223, 'build-26.1cut-21.1-1': 23454, 'build-26.1shake-22.3-2': 23015, 'build-26.1dress-41.1.1-1-1': 306}
# {'shake-22.3-2build-26.1': 23015, 'shake-22.3-2shake-22.3-2': 23015, 'shake-22.3-2cut-21.1-1': 13005}
# {'cut-21.1-1cut-21.1-1': 553752, 'cut-21.1-1hit-18.1': 86808, 'cut-21.1-1drive-11.5': 30031, 'cut-21.1-1dress-41.1.1-1-1': 47727, 'cut-21.1-1build-26.1': 23454, 'cut-21.1-1cooking-45.3': 15072, 'cut-21.1-1run-51.3.2': 20389, 'cut-21.1-1throw-17.1-1': 20714, 'cut-21.1-1shake-22.3-2': 13005}
selected_pkl = {}
selected_paired_pkl = {}
pangea_pkl = {}
negative_pkl = []
dataset_list = []
num_images = 0
for data_idx, data_item in enumerate(data):
save_flag = False
if data_item[0] in mapping_dataset_directory.keys():
dataset = mapping_dataset_directory[data_item[0]]
else:
dataset = data_item[0]
image_path = '/data/xiaoqian/Images/' + dataset + '/' + data_item[1]
if not os.path.isfile(image_path):
if not dataset in dataset_list:
dataset_list.append(dataset)
continue
print(data_item)
exit()
orig_label = data_item[2]
node_labels = data_item[3]
node_labels_id = [object_to_idx[node] for node in node_labels]
co_objects = list(set(node_labels_id).intersection(set(true_selected_list_id)))
if len(co_objects) > 0:
for sel_paired_objects in true_selected_list:
if object_to_idx[sel_paired_objects] in co_objects:
if sel_paired_objects not in selected_pkl.keys():
selected_pkl[sel_paired_objects] = [data_idx]
save_flag = True
else:
if len(selected_pkl[sel_paired_objects]) < 2000:
save_flag = True
selected_pkl[sel_paired_objects].append(data_idx)
for sel_paired_objects in true_selected_paired_list:
sel_obj1, sel_obj2 = sel_paired_objects.split("_")
if object_to_idx[sel_obj1] in co_objects and object_to_idx[sel_obj2] in co_objects:
if sel_paired_objects not in selected_paired_pkl.keys():
selected_paired_pkl[sel_paired_objects] = {}
if sel_paired_objects not in selected_paired_pkl[sel_paired_objects].keys():
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_paired_objects] = [data_idx]
else:
if len(selected_paired_pkl[sel_paired_objects][sel_paired_objects]) < 2000:
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_paired_objects].append(data_idx)
elif object_to_idx[sel_obj1] in co_objects:
if sel_paired_objects not in selected_paired_pkl.keys():
selected_paired_pkl[sel_paired_objects] = {}
if sel_obj1 not in selected_paired_pkl[sel_paired_objects].keys():
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_obj1] = [data_idx]
else:
if len(selected_paired_pkl[sel_paired_objects][sel_obj1]) < 2000:
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_obj1].append(data_idx)
elif object_to_idx[sel_obj2] in co_objects:
if sel_paired_objects not in selected_paired_pkl.keys():
selected_paired_pkl[sel_paired_objects] = {}
if sel_obj2 not in selected_paired_pkl[sel_paired_objects].keys():
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_obj2] = [data_idx]
else:
if len(selected_paired_pkl[sel_paired_objects][sel_obj2]) < 2000:
save_flag = True
selected_paired_pkl[sel_paired_objects][sel_obj2].append(data_idx)
else:
if len(negative_pkl) < 3000:
neg_flag = False
for sel_list in selected_list:
for nod_lab in node_labels:
if sel_list in nod_lab:
neg_flag = True
break
if neg_flag:
break
if not neg_flag:
save_flag = True
negative_pkl.append(data_idx)
if save_flag:
num_images += 1
if not os.path.exists(os.path.dirname(os.path.join("/home/lihong/workspace/pangea/pangea", dataset, data_item[1]))):
os.makedirs(os.path.dirname(os.path.join("/home/lihong/workspace/pangea/pangea", dataset, data_item[1])))
shutil.copy(image_path, os.path.join("/home/lihong/workspace/pangea/pangea", dataset, data_item[1]))
if data_idx % 1000 == 0:
print(len(data),data_idx)
for name in selected_pkl.keys():
print(f"selected {name} affordance has {len(selected_pkl[name])} objects")
for name in selected_paired_pkl.keys():
for sub_name in selected_paired_pkl[name].keys():
print(f"selected {name} paired actions {sub_name} has {len(selected_paired_pkl[name][sub_name])} objects")
print("negative_pkl has {} objects".format(len(negative_pkl)))
print("num_images has {} objects".format(num_images))
pangea_pkl["selected_pkl"] = selected_pkl
pangea_pkl["selected_paired_pkl"] = selected_paired_pkl
pangea_pkl["negative_pkl"] = negative_pkl
with open(os.path.join("/home/lihong/workspace/pangea","pangea_test.pkl"),"wb") as fp:
pickle.dump(pangea_pkl,fp)
print(dataset_list)
exit()
selected_images = {}
save_data = []
for data_idx, data_item in enumerate(data):
if data_item[0] in mapping_dataset_directory.keys():
dataset = mapping_dataset_directory[data_item[0]]
else:
dataset = data_item[0]
image_path = '/data/xiaoqian/Images/' + dataset + '/' + data_item[1]
if not os.path.isfile(image_path):
if not dataset in dataset_list:
dataset_list.append(dataset)
continue
orig_label = data_item[2]
node_labels = data_item[3]
if true_selected_list[9] in node_labels:
for i in range(len(true_selected_list)):
if true_selected_list[i] in node_labels:
if true_selected_list[9]+ true_selected_list[i] in selected_images.keys():
selected_images[true_selected_list[9]+ true_selected_list[i]] += 1
else:
selected_images[true_selected_list[9]+ true_selected_list[i]] = 1
if data_idx %1000 == 0:
print(data_idx)
print(selected_images)
|