File size: 4,285 Bytes
c141e5a
 
 
57fb01c
c141e5a
 
 
57fb01c
d3e8302
 
 
 
e892652
 
 
d44407c
b4dacd4
122ec72
136c7a1
122ec72
57fb01c
 
c141e5a
3aa7c64
c141e5a
 
 
 
d3e8302
c141e5a
d3e8302
c141e5a
 
 
 
57fb01c
c141e5a
57fb01c
 
3aa7c64
c141e5a
 
 
 
3aa7c64
c141e5a
 
 
 
 
 
5e4cf3d
c141e5a
 
 
 
 
 
 
57fb01c
 
c141e5a
 
 
 
 
 
 
 
 
57fb01c
3aa7c64
c141e5a
 
 
 
9c27a5b
57fb01c
c141e5a
 
 
9c27a5b
c141e5a
 
 
57fb01c
c141e5a
 
 
 
57fb01c
c141e5a
 
 
57fb01c
c141e5a
 
 
 
 
 
 
 
 
 
 
 
57fb01c
c141e5a
57fb01c
9c27a5b
c141e5a
9c27a5b
c141e5a
 
 
 
57fb01c
 
9c27a5b
c141e5a
 
 
 
 
 
 
57fb01c
c141e5a
 
 
 
 
57fb01c
c141e5a
57fb01c
 
c141e5a
 
 
57fb01c
 
c141e5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")

DESCRIPTION = """\
# EXAONE 3.0 7.8B Instruct

<span class="We-hope-EXAONE-continues-to-advance-Expert-AI-with-its-effectiveness-and-bilingual-skills">We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.</span>

<center>This is a official demo of <a href=https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct>LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct</a>, fine-tuned for instruction following.</center>

<center>πŸ‘‹ For more details, please check <a href=https://www.lgresearch.ai/blog/view?seq=460>our blog</a> or <a href=https://arxiv.org/abs/2408.03541>technical report</a></center>
"""

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "3840"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

model.eval()


@spaces.GPU()
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 128,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
) -> Iterator[str]:
    messages = [{"role":"system","content": system_prompt}]
    print(f'message: {message}')
    print(f'chat_history: {chat_history}')
    for user, assistant in chat_history:
        messages.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    messages.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(
        messages, 
        add_generation_prompt=True, 
        return_tensors="pt"
    )
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=False if top_k == 1 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=1.0,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
                value="You are EXAONE model from LG AI Research, a helpful assistant.",
                label="System Prompt",
                render=False,
            ),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=2.0,
            step=0.1,
            value=0.7,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Explain who you are"],
        ["λ„ˆμ˜ μ†Œμ›μ„ 말해봐"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()