Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,897 Bytes
6129036 2a80ede b8477ee 6129036 9aa2be5 6129036 b8477ee 6129036 b8477ee da5efbd 5546838 da5efbd 5546838 6129036 2a80ede 6129036 97652e2 6129036 97652e2 6129036 2a80ede 6129036 2a80ede 6129036 b8477ee 6129036 9aa2be5 b8477ee 2a80ede 6129036 b8477ee 6129036 b8477ee 6129036 b8477ee 9aa2be5 b8477ee 9aa2be5 b8477ee 6129036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from __future__ import annotations
import math
from glob import glob
from functools import partial
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from datasets import load_dataset
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
def generate(
input_image: Image.Image,
instruction: str,
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
pipe: StableDiffusionInstructPix2PixPipeline
):
seed = random.randint(0, 100000) if randomize_seed else seed
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [seed, text_cfg_scale, image_cfg_scale, input_image]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction, image=input_image,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator,
).images[0]
return [seed, text_cfg_scale, image_cfg_scale, edited_image]
def show_image(image_name, image_options):
if image_name is None:
return
return image_options[image_name]
def reset():
return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None, None, None, ""]
def sample(dataset):
sample_id = random.choice(list(range(len(dataset["train"]))))
sample = dataset["train"][sample_id]
return [sample["input_image"], sample["output_image"], sample["edit"], sample["inverse_edit"]]
HELP_TEXT = """
If you're not getting what you want, there may be a few reasons:
1. Is the image not changing enough? Your Image CFG weight may be too high. This value dictates how similar the output should be to the input. It's possible your edit requires larger changes from the original image, and your Image CFG weight isn't allowing that. Alternatively, your Text CFG weight may be too low. This value dictates how much to listen to the text instruction. The default Image CFG of 1.5 and Text CFG of 7.5 are a good starting point, but aren't necessarily optimal for each edit. Try:
* Decreasing the Image CFG weight, or
* Increasing the Text CFG weight, or
2. Conversely, is the image changing too much, such that the details in the original image aren't preserved? Try:
* Increasing the Image CFG weight, or
* Decreasing the Text CFG weight
3. Try generating results with different random seeds by setting "Randomize Seed" and running generation multiple times. You can also try setting "Randomize CFG" to sample new Text CFG and Image CFG values each time.
4. Rephrasing the instruction sometimes improves results (e.g., "turn him into a dog" vs. "make him a dog" vs. "as a dog").
5. Increasing the number of steps sometimes improves results.
6. Do faces look weird? The Stable Diffusion autoencoder has a hard time with faces that are small in the image. Try:
* Cropping the image so the face takes up a larger portion of the frame.
"""
def main():
model_id = "MudeHui/ip2p-warp-gpt4v"
if torch.cuda.is_available():
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to('cuda')
else:
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
image_options = {path.split("/")[-1].split(".")[0]: path for path in sorted(glob("imgs/*png"))}
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
HQ-Edit: A High-Quality and High-Coverage Dataset for General Image Editing
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/tennant/HQEdit?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
with gr.Row():
with gr.Column(scale=1, min_width=100):
dropdown = gr.Dropdown(list(image_options.keys()), label="Select from Given Images")
with gr.Column(scale=3):
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil", interactive=True, height=512, width=512)
edited_image = gr.Image(label=f"Edited Image", type="pil", interactive=False, height=512, width=512)
with gr.Row():
steps = gr.Number(value=20, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
randomize_cfg = gr.Radio(
["Fix CFG", "Randomize CFG"],
value="Fix CFG",
type="index",
show_label=False,
interactive=True,
)
text_cfg_scale = gr.Number(value=7.0, label=f"Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
gr.Markdown(HELP_TEXT)
with gr.Row():
gr.Markdown("## Dataset Preview")
sample_button = gr.Button("See Another Sample")
with gr.Row():
input_image_preview = gr.Image(label="Input Image", type="pil", height=512, width=512)
output_image_preview = gr.Image(label="Output Image", type="pil", height=512, width=512)
edit_text = gr.Textbox(label="Edit Instruction")
inv_edit_text = gr.Textbox(label="Inverse Edit Instruction")
generate_func = partial(generate, pipe=pipe)
generate_button.click(
fn=generate_func,
inputs=[
input_image,
instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, input_image, edited_image, dropdown, instruction],
)
show_image_func = partial(show_image, image_options=image_options)
dropdown.change(show_image_func, inputs=dropdown, outputs=input_image)
dataset = load_dataset("UCSC-VLAA/HQ-Edit-data-demo")
sample_func = partial(sample, dataset=dataset)
sample_button.click(
fn=sample_func,
inputs=[],
outputs=[input_image_preview, output_image_preview, edit_text, inv_edit_text]
)
demo.queue()
demo.launch(share=True, max_threads=1)
if __name__ == "__main__":
main()
|