Spaces:
Running
Running
File size: 1,692 Bytes
8df7c3a e7dcf3d 8df7c3a e7dcf3d 8df7c3a e7dcf3d 8df7c3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from openai import OpenAI
YOUR_OPENAI_API_KEY = "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"
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋
embedding_model_name = "snunlp/KR-SBERT-V40K-klueNLI-augSTS"
embedding_model = HuggingFaceEmbeddings(
model_name=embedding_model_name,
encode_kwargs={"normalize_embeddings": True},
)
# vector DB ๋ก๋๋
save_path = "./my_faiss_index"
vectorstore = FAISS.load_local(save_path, embedding_model,allow_dangerous_deserialization=True)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
def chatbot(input_question):
basic_docs = retriever.invoke(input_question)
context = "\n".join([doc.page_content for doc in basic_docs])
client = OpenAI(
api_key=YOUR_OPENAI_API_KEY)
# question๊ณผ context๋ฅผ message์ ์ฝ์
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": f"""๋น์ ์ ๋ฐ๋์ฒด์ ์ฐจ์ธ๋๋ฐ๋์ฒดํ๊ณผ์ ๋ํด์ ์ค๋ช
ํ๋ Assistant์
๋๋ค.
์ฐจ์ธ๋๋ฐ๋์ฒดํ๊ณผ๋ ํ๊ตญ ์์ธ์ ์ค์๋ํ๊ต์ ์ฐฝ์ICT๊ณต๊ณผ๋ํ์ ์ค๋ฆฝ๋ ํ๊ณผ์
๋๋ค.
๋ค์ ๋งฅ๋ฝ์ ๋ง๊ฒ ์ง๋ฌธ์ ๋ตํ์ธ์.
๋งฅ๋ฝ: {context}
์ง๋ฌธ: {input_question}
"""
}
]
)
return completion.choices[0].message.content
demo = gr.Interface(fn=chatbot, inputs="text", outputs="text")
demo.launch()
|