Spaces:
Sleeping
Sleeping
File size: 21,944 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import numpy as np
import os
import sys
import torch
import torch.utils.cpp_extension
from .bsdf import *
from .loss import *
#----------------------------------------------------------------------------
# C++/Cuda plugin compiler/loader.
_cached_plugin = None
def _get_plugin():
# Return cached plugin if already loaded.
global _cached_plugin
if _cached_plugin is not None:
return _cached_plugin
# Make sure we can find the necessary compiler and libary binaries.
if os.name == 'nt':
def find_cl_path():
import glob
for edition in ['Enterprise', 'Professional', 'BuildTools', 'Community']:
paths = sorted(glob.glob(r"C:\Program Files (x86)\Microsoft Visual Studio\*\%s\VC\Tools\MSVC\*\bin\Hostx64\x64" % edition), reverse=True)
if paths:
return paths[0]
# If cl.exe is not on path, try to find it.
if os.system("where cl.exe >nul 2>nul") != 0:
cl_path = find_cl_path()
if cl_path is None:
raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation")
os.environ['PATH'] += ';' + cl_path
# Compiler options.
opts = ['-DNVDR_TORCH']
# Linker options.
if os.name == 'posix':
ldflags = ['-lcuda', '-lnvrtc']
elif os.name == 'nt':
ldflags = ['cuda.lib', 'advapi32.lib', 'nvrtc.lib']
# List of sources.
source_files = [
'c_src/mesh.cu',
'c_src/loss.cu',
'c_src/bsdf.cu',
'c_src/normal.cu',
'c_src/cubemap.cu',
'c_src/common.cpp',
'c_src/torch_bindings.cpp'
]
# Some containers set this to contain old architectures that won't compile. We only need the one installed in the machine.
os.environ['TORCH_CUDA_ARCH_LIST'] = ''
# Try to detect if a stray lock file is left in cache directory and show a warning. This sometimes happens on Windows if the build is interrupted at just the right moment.
try:
lock_fn = os.path.join(torch.utils.cpp_extension._get_build_directory('renderutils_plugin', False), 'lock')
if os.path.exists(lock_fn):
print("Warning: Lock file exists in build directory: '%s'" % lock_fn)
except:
pass
# Compile and load.
source_paths = [os.path.join(os.path.dirname(__file__), fn) for fn in source_files]
torch.utils.cpp_extension.load(name='renderutils_plugin', sources=source_paths, extra_cflags=opts,
extra_cuda_cflags=opts, extra_ldflags=ldflags, with_cuda=True, verbose=True)
# Import, cache, and return the compiled module.
import renderutils_plugin
_cached_plugin = renderutils_plugin
return _cached_plugin
#----------------------------------------------------------------------------
# Internal kernels, just used for testing functionality
class _fresnel_shlick_func(torch.autograd.Function):
@staticmethod
def forward(ctx, f0, f90, cosTheta):
out = _get_plugin().fresnel_shlick_fwd(f0, f90, cosTheta, False)
ctx.save_for_backward(f0, f90, cosTheta)
return out
@staticmethod
def backward(ctx, dout):
f0, f90, cosTheta = ctx.saved_variables
return _get_plugin().fresnel_shlick_bwd(f0, f90, cosTheta, dout) + (None,)
def _fresnel_shlick(f0, f90, cosTheta, use_python=False):
if use_python:
out = bsdf_fresnel_shlick(f0, f90, cosTheta)
else:
out = _fresnel_shlick_func.apply(f0, f90, cosTheta)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of _fresnel_shlick contains inf or NaN"
return out
class _ndf_ggx_func(torch.autograd.Function):
@staticmethod
def forward(ctx, alphaSqr, cosTheta):
out = _get_plugin().ndf_ggx_fwd(alphaSqr, cosTheta, False)
ctx.save_for_backward(alphaSqr, cosTheta)
return out
@staticmethod
def backward(ctx, dout):
alphaSqr, cosTheta = ctx.saved_variables
return _get_plugin().ndf_ggx_bwd(alphaSqr, cosTheta, dout) + (None,)
def _ndf_ggx(alphaSqr, cosTheta, use_python=False):
if use_python:
out = bsdf_ndf_ggx(alphaSqr, cosTheta)
else:
out = _ndf_ggx_func.apply(alphaSqr, cosTheta)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of _ndf_ggx contains inf or NaN"
return out
class _lambda_ggx_func(torch.autograd.Function):
@staticmethod
def forward(ctx, alphaSqr, cosTheta):
out = _get_plugin().lambda_ggx_fwd(alphaSqr, cosTheta, False)
ctx.save_for_backward(alphaSqr, cosTheta)
return out
@staticmethod
def backward(ctx, dout):
alphaSqr, cosTheta = ctx.saved_variables
return _get_plugin().lambda_ggx_bwd(alphaSqr, cosTheta, dout) + (None,)
def _lambda_ggx(alphaSqr, cosTheta, use_python=False):
if use_python:
out = bsdf_lambda_ggx(alphaSqr, cosTheta)
else:
out = _lambda_ggx_func.apply(alphaSqr, cosTheta)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of _lambda_ggx contains inf or NaN"
return out
class _masking_smith_func(torch.autograd.Function):
@staticmethod
def forward(ctx, alphaSqr, cosThetaI, cosThetaO):
ctx.save_for_backward(alphaSqr, cosThetaI, cosThetaO)
out = _get_plugin().masking_smith_fwd(alphaSqr, cosThetaI, cosThetaO, False)
return out
@staticmethod
def backward(ctx, dout):
alphaSqr, cosThetaI, cosThetaO = ctx.saved_variables
return _get_plugin().masking_smith_bwd(alphaSqr, cosThetaI, cosThetaO, dout) + (None,)
def _masking_smith(alphaSqr, cosThetaI, cosThetaO, use_python=False):
if use_python:
out = bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO)
else:
out = _masking_smith_func.apply(alphaSqr, cosThetaI, cosThetaO)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of _masking_smith contains inf or NaN"
return out
#----------------------------------------------------------------------------
# Shading normal setup (bump mapping + bent normals)
class _prepare_shading_normal_func(torch.autograd.Function):
@staticmethod
def forward(ctx, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl):
ctx.two_sided_shading, ctx.opengl = two_sided_shading, opengl
out = _get_plugin().prepare_shading_normal_fwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl, False)
ctx.save_for_backward(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm)
return out
@staticmethod
def backward(ctx, dout):
pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm = ctx.saved_variables
return _get_plugin().prepare_shading_normal_bwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, dout, ctx.two_sided_shading, ctx.opengl) + (None, None, None)
def prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading=True, opengl=True, use_python=False):
'''Takes care of all corner cases and produces a final normal used for shading:
- Constructs tangent space
- Flips normal direction based on geometric normal for two sided Shading
- Perturbs shading normal by normal map
- Bends backfacing normals towards the camera to avoid shading artifacts
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent.
Args:
pos: World space g-buffer position.
view_pos: Camera position in world space (typically using broadcasting).
perturbed_nrm: Trangent-space normal perturbation from normal map lookup.
smooth_nrm: Interpolated vertex normals.
smooth_tng: Interpolated vertex tangents.
geom_nrm: Geometric (face) normals.
two_sided_shading: Use one/two sided shading
opengl: Use OpenGL/DirectX normal map conventions
use_python: Use PyTorch implementation (for validation)
Returns:
Final shading normal
'''
if perturbed_nrm is None:
perturbed_nrm = torch.tensor([0, 0, 1], dtype=torch.float32, device='cuda', requires_grad=False)[None, None, None, ...]
if use_python:
out = bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl)
else:
out = _prepare_shading_normal_func.apply(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of prepare_shading_normal contains inf or NaN"
return out
#----------------------------------------------------------------------------
# BSDF functions
class _lambert_func(torch.autograd.Function):
@staticmethod
def forward(ctx, nrm, wi):
out = _get_plugin().lambert_fwd(nrm, wi, False)
ctx.save_for_backward(nrm, wi)
return out
@staticmethod
def backward(ctx, dout):
nrm, wi = ctx.saved_variables
return _get_plugin().lambert_bwd(nrm, wi, dout) + (None,)
def lambert(nrm, wi, use_python=False):
'''Lambertian bsdf.
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent.
Args:
nrm: World space shading normal.
wi: World space light vector.
use_python: Use PyTorch implementation (for validation)
Returns:
Shaded diffuse value with shape [minibatch_size, height, width, 1]
'''
if use_python:
out = bsdf_lambert(nrm, wi)
else:
out = _lambert_func.apply(nrm, wi)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN"
return out
class _frostbite_diffuse_func(torch.autograd.Function):
@staticmethod
def forward(ctx, nrm, wi, wo, linearRoughness):
out = _get_plugin().frostbite_fwd(nrm, wi, wo, linearRoughness, False)
ctx.save_for_backward(nrm, wi, wo, linearRoughness)
return out
@staticmethod
def backward(ctx, dout):
nrm, wi, wo, linearRoughness = ctx.saved_variables
return _get_plugin().frostbite_bwd(nrm, wi, wo, linearRoughness, dout) + (None,)
def frostbite_diffuse(nrm, wi, wo, linearRoughness, use_python=False):
'''Frostbite, normalized Disney Diffuse bsdf.
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent.
Args:
nrm: World space shading normal.
wi: World space light vector.
wo: World space camera vector.
linearRoughness: Material roughness
use_python: Use PyTorch implementation (for validation)
Returns:
Shaded diffuse value with shape [minibatch_size, height, width, 1]
'''
if use_python:
out = bsdf_frostbite(nrm, wi, wo, linearRoughness)
else:
out = _frostbite_diffuse_func.apply(nrm, wi, wo, linearRoughness)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN"
return out
class _pbr_specular_func(torch.autograd.Function):
@staticmethod
def forward(ctx, col, nrm, wo, wi, alpha, min_roughness):
ctx.save_for_backward(col, nrm, wo, wi, alpha)
ctx.min_roughness = min_roughness
out = _get_plugin().pbr_specular_fwd(col, nrm, wo, wi, alpha, min_roughness, False)
return out
@staticmethod
def backward(ctx, dout):
col, nrm, wo, wi, alpha = ctx.saved_variables
return _get_plugin().pbr_specular_bwd(col, nrm, wo, wi, alpha, ctx.min_roughness, dout) + (None, None)
def pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08, use_python=False):
'''Physically-based specular bsdf.
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted.
Args:
col: Specular lobe color
nrm: World space shading normal.
wo: World space camera vector.
wi: World space light vector
alpha: Specular roughness parameter with shape [minibatch_size, height, width, 1]
min_roughness: Scalar roughness clamping threshold
use_python: Use PyTorch implementation (for validation)
Returns:
Shaded specular color
'''
if use_python:
out = bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=min_roughness)
else:
out = _pbr_specular_func.apply(col, nrm, wo, wi, alpha, min_roughness)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of pbr_specular contains inf or NaN"
return out
class _pbr_bsdf_func(torch.autograd.Function):
@staticmethod
def forward(ctx, kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF):
ctx.save_for_backward(kd, arm, pos, nrm, view_pos, light_pos)
ctx.min_roughness = min_roughness
ctx.BSDF = BSDF
out = _get_plugin().pbr_bsdf_fwd(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF, False)
return out
@staticmethod
def backward(ctx, dout):
kd, arm, pos, nrm, view_pos, light_pos = ctx.saved_variables
return _get_plugin().pbr_bsdf_bwd(kd, arm, pos, nrm, view_pos, light_pos, ctx.min_roughness, ctx.BSDF, dout) + (None, None, None)
def pbr_bsdf(kd, arm, pos, nrm, view_pos, light_pos, min_roughness=0.08, bsdf="lambert", use_python=False):
'''Physically-based bsdf, both diffuse & specular lobes
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted.
Args:
kd: Diffuse albedo.
arm: Specular parameters (attenuation, linear roughness, metalness).
pos: World space position.
nrm: World space shading normal.
view_pos: Camera position in world space, typically using broadcasting.
light_pos: Light position in world space, typically using broadcasting.
min_roughness: Scalar roughness clamping threshold
bsdf: Controls diffuse BSDF, can be either 'lambert' or 'frostbite'
use_python: Use PyTorch implementation (for validation)
Returns:
Shaded color.
'''
BSDF = 0
if bsdf == 'frostbite':
BSDF = 1
if use_python:
out = bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF)
else:
out = _pbr_bsdf_func.apply(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of pbr_bsdf contains inf or NaN"
return out
#----------------------------------------------------------------------------
# cubemap filter with filtering across edges
class _diffuse_cubemap_func(torch.autograd.Function):
@staticmethod
def forward(ctx, cubemap):
out = _get_plugin().diffuse_cubemap_fwd(cubemap)
ctx.save_for_backward(cubemap)
return out
@staticmethod
def backward(ctx, dout):
cubemap, = ctx.saved_variables
cubemap_grad = _get_plugin().diffuse_cubemap_bwd(cubemap, dout)
return cubemap_grad, None
def diffuse_cubemap(cubemap, use_python=False):
if use_python:
assert False
else:
out = _diffuse_cubemap_func.apply(cubemap)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of diffuse_cubemap contains inf or NaN"
return out
class _specular_cubemap(torch.autograd.Function):
@staticmethod
def forward(ctx, cubemap, roughness, costheta_cutoff, bounds):
out = _get_plugin().specular_cubemap_fwd(cubemap, bounds, roughness, costheta_cutoff)
ctx.save_for_backward(cubemap, bounds)
ctx.roughness, ctx.theta_cutoff = roughness, costheta_cutoff
return out
@staticmethod
def backward(ctx, dout):
cubemap, bounds = ctx.saved_variables
cubemap_grad = _get_plugin().specular_cubemap_bwd(cubemap, bounds, dout, ctx.roughness, ctx.theta_cutoff)
return cubemap_grad, None, None, None
# Compute the bounds of the GGX NDF lobe to retain "cutoff" percent of the energy
def __ndfBounds(res, roughness, cutoff):
def ndfGGX(alphaSqr, costheta):
costheta = np.clip(costheta, 0.0, 1.0)
d = (costheta * alphaSqr - costheta) * costheta + 1.0
return alphaSqr / (d * d * np.pi)
# Sample out cutoff angle
nSamples = 1000000
costheta = np.cos(np.linspace(0, np.pi/2.0, nSamples))
D = np.cumsum(ndfGGX(roughness**4, costheta))
idx = np.argmax(D >= D[..., -1] * cutoff)
# Brute force compute lookup table with bounds
bounds = _get_plugin().specular_bounds(res, costheta[idx])
return costheta[idx], bounds
__ndfBoundsDict = {}
def specular_cubemap(cubemap, roughness, cutoff=0.99, use_python=False):
assert cubemap.shape[0] == 6 and cubemap.shape[1] == cubemap.shape[2], "Bad shape for cubemap tensor: %s" % str(cubemap.shape)
if use_python:
assert False
else:
key = (cubemap.shape[1], roughness, cutoff)
if key not in __ndfBoundsDict:
__ndfBoundsDict[key] = __ndfBounds(*key)
out = _specular_cubemap.apply(cubemap, roughness, *__ndfBoundsDict[key])
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of specular_cubemap contains inf or NaN"
return out[..., 0:3] / out[..., 3:]
#----------------------------------------------------------------------------
# Fast image loss function
class _image_loss_func(torch.autograd.Function):
@staticmethod
def forward(ctx, img, target, loss, tonemapper):
ctx.loss, ctx.tonemapper = loss, tonemapper
ctx.save_for_backward(img, target)
out = _get_plugin().image_loss_fwd(img, target, loss, tonemapper, False)
return out
@staticmethod
def backward(ctx, dout):
img, target = ctx.saved_variables
return _get_plugin().image_loss_bwd(img, target, dout, ctx.loss, ctx.tonemapper) + (None, None, None)
def image_loss(img, target, loss='l1', tonemapper='none', use_python=False):
'''Compute HDR image loss. Combines tonemapping and loss into a single kernel for better perf.
All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted.
Args:
img: Input image.
target: Target (reference) image.
loss: Type of loss. Valid options are ['l1', 'mse', 'smape', 'relmse']
tonemapper: Tonemapping operations. Valid options are ['none', 'log_srgb']
use_python: Use PyTorch implementation (for validation)
Returns:
Image space loss (scalar value).
'''
if use_python:
out = image_loss_fn(img, target, loss, tonemapper)
else:
out = _image_loss_func.apply(img, target, loss, tonemapper)
out = torch.sum(out) / (img.shape[0]*img.shape[1]*img.shape[2])
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of image_loss contains inf or NaN"
return out
#----------------------------------------------------------------------------
# Transform points function
class _xfm_func(torch.autograd.Function):
@staticmethod
def forward(ctx, points, matrix, isPoints):
ctx.save_for_backward(points, matrix)
ctx.isPoints = isPoints
return _get_plugin().xfm_fwd(points, matrix, isPoints, False)
@staticmethod
def backward(ctx, dout):
points, matrix = ctx.saved_variables
return (_get_plugin().xfm_bwd(points, matrix, dout, ctx.isPoints),) + (None, None, None)
def xfm_points(points, matrix, use_python=False):
'''Transform points.
Args:
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
use_python: Use PyTorch's torch.matmul (for validation)
Returns:
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
'''
if use_python:
out = torch.matmul(torch.nn.functional.pad(points, pad=(0,1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
else:
out = _xfm_func.apply(points, matrix, True)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
return out
def xfm_vectors(vectors, matrix, use_python=False):
'''Transform vectors.
Args:
vectors: Tensor containing 3D vectors with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
use_python: Use PyTorch's torch.matmul (for validation)
Returns:
Transformed vectors in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
'''
if use_python:
out = torch.matmul(torch.nn.functional.pad(vectors, pad=(0,1), mode='constant', value=0.0), torch.transpose(matrix, 1, 2))[..., 0:3].contiguous()
else:
out = _xfm_func.apply(vectors, matrix, False)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of xfm_vectors contains inf or NaN"
return out
|