File size: 17,417 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import os.path as osp
import math
import glob
from datetime import datetime
import imageio
import torch
import video3d.utils.meters as meters
import video3d.utils.misc as misc
import wandb

def sample_frames(batch, num_sample_frames, iteration, stride=1):
    ## window slicing sampling
    images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
    num_seqs, total_num_frames = images.shape[:2]
    # start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)

    ## forward and backward
    num_windows = total_num_frames - num_sample_frames +1
    start_frame_idx = (iteration * stride) % (2*num_windows)
    ## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
    mid_val = (2*num_windows -1) /2
    start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))

    new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
        bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
        bg_image, \
        seq_idx, \
        frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
    return new_batch


def indefinite_generator(loader):
    while True:
        for x in loader:
            yield x


class Trainer:
    def __init__(self, cfgs, model):
        self.cfgs = cfgs
        self.device = cfgs.get('device', 'cpu')
        self.num_epochs = cfgs.get('num_epochs', 1)

        # The logic is, if the num_iterations is set in the cfg
        # for any 'epoch' in cfg, I rescale it to (epoch / 120) * epoch_now, as in horse exp
        # for any 'iter' in cfg, I just keep them the same
        self.num_iterations = cfgs.get('num_iterations', 0)
        if self.num_iterations != 0:
            self.use_total_iterations = True
        else:
            self.use_total_iterations = False

        self.num_sample_frames = cfgs.get('num_sample_frames', 100)
        self.sample_frame_stride = cfgs.get('sample_frame_stride', 1)
        self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
        self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
        self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2)  # -1 for keeping all checkpoints
        self.resume = cfgs.get('resume', True)
        self.use_logger = cfgs.get('use_logger', True)
        self.log_freq_images = cfgs.get('log_freq_images', 1000)
        self.log_train_images = cfgs.get('log_train_images', False)
        self.log_freq_losses = cfgs.get('log_freq_losses', 100)
        self.visualize_validation = cfgs.get('visualize_validation', False)
        self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
        self.archive_code = cfgs.get('archive_code', True)
        self.checkpoint_name = cfgs.get('checkpoint_name', None)
        self.test_result_dir = cfgs.get('test_result_dir', None)
        self.validate = cfgs.get('validate', False)
        self.current_epoch = 0
        self.logger = None
        self.viz_input = None
        self.dataset = cfgs.get('dataset', 'video')
        self.train_with_cub = cfgs.get('train_with_cub', False)
        self.train_with_kaggle = cfgs.get('train_with_kaggle', False)
        self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)

        self.metrics_trace = meters.MetricsTrace()
        self.make_metrics = lambda m=None: meters.StandardMetrics(m)

        self.batch_size = cfgs.get('batch_size', 64)
        self.in_image_size = cfgs.get('in_image_size', 256)
        self.out_image_size = cfgs.get('out_image_size', 256)
        self.num_workers = cfgs.get('num_workers', 4)
        self.run_train = cfgs.get('run_train', False)
        self.train_data_dir = cfgs.get('train_data_dir', None)
        self.val_data_dir = cfgs.get('val_data_dir', None)
        self.run_test = cfgs.get('run_test', False)
        self.test_data_dir = cfgs.get('test_data_dir', None)

        self.train_loader, self.val_loader, self.test_loader = model.get_data_loaders(cfgs, self.dataset, in_image_size=self.in_image_size, out_image_size=self.out_image_size, batch_size=self.batch_size, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.train_data_dir, val_data_dir=self.val_data_dir, test_data_dir=self.test_data_dir)
        if self.train_with_cub:
            self.batch_size_cub = cfgs.get('batch_size_cub', 64)
            self.data_dir_cub = cfgs.get('data_dir_cub', None)
            self.train_loader_cub, self.val_loader_cub, self.test_loader_cub = model.get_data_loaders(cfgs, 'cub', in_image_size=self.in_image_size, batch_size=self.batch_size_cub, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_cub, val_data_dir=self.data_dir_cub, test_data_dir=self.data_dir_cub)
        if self.train_with_kaggle:
            self.batch_size_kaggle = cfgs.get('batch_size_kaggle', 64)
            self.data_dir_kaggle = cfgs.get('data_dir_kaggle', None)
            self.train_loader_kaggle, self.val_loader_kaggle, self.test_loader_kaggle = model.get_data_loaders(cfgs, 'kaggle', in_image_size=self.in_image_size, batch_size=self.batch_size_kaggle, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_kaggle, val_data_dir=self.data_dir_kaggle, test_data_dir=self.data_dir_kaggle)

        if self.use_total_iterations:
            # reset the epoch related cfgs

            train_data_dir = cfgs.get("train_data_dir", None)
            if isinstance(train_data_dir, str):
                num_of_classes = 1
            elif isinstance(train_data_dir, dict):
                num_of_classes = len(train_data_dir)
            
            dataloader_length = 0
            for class_idx in range(num_of_classes):
                dataloader_length += len(self.train_loader[class_idx])

            total_epoch = int(self.num_iterations / dataloader_length) + 1

            print(f'run for {total_epoch} epochs')

            for k, v in cfgs.items():
                if 'epoch' in k:
                    if isinstance(v, list):
                        new_v = [int(total_epoch * x / 120) for x in v]
                        cfgs[k] = new_v
                    elif isinstance(v, int):
                        new_v = int(total_epoch * v / 120) + 1
                        cfgs[k] = new_v
                else:
                    continue

            self.num_epochs = total_epoch
            self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
            self.cfgs = cfgs

        self.model = model(cfgs)
        self.model.trainer = self
        self.save_result_freq = cfgs.get('save_result_freq', None)
        self.train_result_dir = osp.join(self.checkpoint_dir, 'results')

    def load_checkpoint(self, optim=True):
        """Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
        if self.checkpoint_name is not None:
            checkpoint_path = osp.join(self.checkpoint_dir, self.checkpoint_name)
        else:
            checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
            if len(checkpoints) == 0:
                return 0, 0
            checkpoint_path = checkpoints[-1]
            self.checkpoint_name = osp.basename(checkpoint_path)
        print(f"Loading checkpoint from {checkpoint_path}")
        cp = torch.load(checkpoint_path, map_location=self.device)
        self.model.load_model_state(cp)
        if optim:
            self.model.load_optimizer_state(cp)
        self.metrics_trace = cp['metrics_trace']
        epoch = cp['epoch']
        total_iter = cp['total_iter']
        return epoch, total_iter

    def save_checkpoint(self, epoch, total_iter=0, optim=True):
        """Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
        misc.xmkdir(self.checkpoint_dir)
        checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
        state_dict = self.model.get_model_state()
        if optim:
            optimizer_state = self.model.get_optimizer_state()
            state_dict = {**state_dict, **optimizer_state}
        state_dict['metrics_trace'] = self.metrics_trace
        state_dict['epoch'] = epoch
        state_dict['total_iter'] = total_iter
        print(f"Saving checkpoint to {checkpoint_path}")
        torch.save(state_dict, checkpoint_path)
        if self.keep_num_checkpoint > 0:
            misc.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint)

    def save_clean_checkpoint(self, path):
        """Save model state only to specified path."""
        torch.save(self.model.get_model_state(), path)

    def reset_viz_data_iterator(self):
        self.viz_data_iterator = iter(self.val_loader) if self.visualize_validation else iter(self.train_loader)

    def reset_cub_train_data_iterator(self):
        self.cub_train_data_iterator = iter(self.train_loader_cub)

    def reset_cub_viz_data_iterator(self):
        self.cub_viz_data_iterator = iter(self.val_loader_cub) if self.visualize_validation else iter(self.train_loader_cub)

    def test(self):
        """Perform testing."""
        self.model.to(self.device)
        self.model.set_eval()
        epoch, self.total_iter = self.load_checkpoint(optim=False)

        if self.test_result_dir is None:
            self.test_result_dir = osp.join(self.checkpoint_dir, f'test_results_{self.checkpoint_name}'.replace('.pth', ''))
        print(f"Saving testing results to {self.test_result_dir}")

        with torch.no_grad():
            for iteration, batch in enumerate(self.test_loader):
                m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.test_result_dir, which_data=self.dataset, is_training=False)
                print(f"T{epoch:04}/{iteration:05}")

        score_path = osp.join(self.test_result_dir, 'all_metrics.txt')
        # self.model.save_scores(score_path)

    def train(self):
        """Perform training."""
        # archive code and configs
        if self.archive_code:
            misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
        misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)

        # initialize
        start_epoch = 0
        self.total_iter = 0
        self.metrics_trace.reset()
        self.model.to(self.device)
        self.model.reset_optimizers()

        # resume from checkpoint
        if self.resume:
            start_epoch, self.total_iter = self.load_checkpoint(optim=True)

        # train with cub
        if self.train_with_cub:
            self.cub_train_data_iterator = indefinite_generator(self.train_loader_cub)

        # initialize tensorboard logger
        if self.use_logger:
            wandb.tensorboard.patch(root_logdir=osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")))
            wandb.init(name=self.checkpoint_dir.split("/")[-1], project="APT36K")
            #wandb.tensorboard.patch(save=False, tensorboard_x=True)
            from torch.utils.tensorboard import SummaryWriter
            self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
            self.viz_data_iterator = indefinite_generator(self.val_loader) if self.visualize_validation else indefinite_generator(self.train_loader)
            if self.fix_viz_batch:
                self.viz_batch = next(self.viz_data_iterator)

            # train with cub
            if self.train_with_cub:
                self.cub_viz_data_iterator = indefinite_generator(self.val_loader_cub) if self.visualize_validation else indefinite_generator(self.train_loader_cub)
                if self.fix_viz_batch:
                    self.viz_batch_cub = next(self.cub_viz_data_iterator)


        # run epochs
        epoch = 0
        for epoch in range(start_epoch, self.num_epochs):
            metrics = self.run_epoch(epoch)
            self.metrics_trace.append("train", metrics)
            if (epoch+1) % self.save_checkpoint_freq == 0:
                self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
            if self.cfgs.get('pyplot_metrics', True):
                self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
            self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
        wandb.finish()
        print(f"Training completed for all {epoch+1} epochs.")

    def run_epoch(self, epoch):
        metrics = self.make_metrics()

        self.model.set_train()
        for iteration, batch in enumerate(self.train_loader):
            self.total_iter += 1

            num_seqs, num_frames = batch[0].shape[:2]
            total_im_num = num_seqs*num_frames
            m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True)

            if self.train_with_cub and epoch >= self.cub_start_epoch:
                batch_cub = next(self.cub_train_data_iterator)
                num_seqs, num_frames = batch_cub[0].shape[:2]
                total_im_num += num_seqs*num_frames
                m_cub = self.model.forward(batch_cub, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data='cub', is_training=True)
                m.update({'cub_'+k: v for k,v in m_cub.items()})
                m['total_loss'] = self.model.total_loss

            self.model.backward()

            metrics.update(m, total_im_num)
            print(f"T{epoch:04}/{iteration:05}/{metrics}")

            ## reset optimizers
            if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
                if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
                    self.model.reset_optimizers()

            if self.use_logger:
                if self.total_iter % self.log_freq_losses == 0:
                    for name, loss in m.items():
                        label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
                        self.logger.add_scalar(label, loss, self.total_iter)

                if self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
                    with torch.no_grad():
                        m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False)
                        torch.cuda.empty_cache()

                if self.total_iter % self.log_freq_images == 0:
                    with torch.no_grad():
                        if self.log_train_images:
                            m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=True)

                        if self.fix_viz_batch:
                            batch = self.viz_batch
                        elif self.visualize_validation:
                            batch = next(self.viz_data_iterator)
                            # try:
                            #     batch = next(self.viz_data_iterator)
                            # except:  # iterator exhausted
                            #     self.reset_viz_data_iterator()
                            #     batch = next(self.viz_data_iterator)
                            m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='val_', is_training=False)
                        for name, loss in m.items():
                            self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)

                        if self.train_with_cub and epoch >= self.cub_start_epoch:
                            if self.log_train_images:
                                m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_train_', is_training=True)

                            if self.fix_viz_batch:
                                batch_cub = self.viz_batch_cub
                            elif self.visualize_validation:
                                batch_cub = next(self.cub_viz_data_iterator)
                                # try:
                                #     batch = next(self.viz_data_iterator)
                                # except:  # iterator exhausted
                                #     self.reset_viz_data_iterator()
                                #     batch = next(self.viz_data_iterator)
                            m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_val_', is_training=False)
                            for name, loss in m.items():
                                self.logger.add_scalar(f'cub_loss_val/{name}', loss, self.total_iter)
                    torch.cuda.empty_cache()

        self.model.scheduler_step()
        return metrics