Spaces:
Sleeping
Sleeping
File size: 17,417 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import os.path as osp
import math
import glob
from datetime import datetime
import imageio
import torch
import video3d.utils.meters as meters
import video3d.utils.misc as misc
import wandb
def sample_frames(batch, num_sample_frames, iteration, stride=1):
## window slicing sampling
images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
num_seqs, total_num_frames = images.shape[:2]
# start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)
## forward and backward
num_windows = total_num_frames - num_sample_frames +1
start_frame_idx = (iteration * stride) % (2*num_windows)
## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
mid_val = (2*num_windows -1) /2
start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))
new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
bg_image, \
seq_idx, \
frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
return new_batch
def indefinite_generator(loader):
while True:
for x in loader:
yield x
class Trainer:
def __init__(self, cfgs, model):
self.cfgs = cfgs
self.device = cfgs.get('device', 'cpu')
self.num_epochs = cfgs.get('num_epochs', 1)
# The logic is, if the num_iterations is set in the cfg
# for any 'epoch' in cfg, I rescale it to (epoch / 120) * epoch_now, as in horse exp
# for any 'iter' in cfg, I just keep them the same
self.num_iterations = cfgs.get('num_iterations', 0)
if self.num_iterations != 0:
self.use_total_iterations = True
else:
self.use_total_iterations = False
self.num_sample_frames = cfgs.get('num_sample_frames', 100)
self.sample_frame_stride = cfgs.get('sample_frame_stride', 1)
self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2) # -1 for keeping all checkpoints
self.resume = cfgs.get('resume', True)
self.use_logger = cfgs.get('use_logger', True)
self.log_freq_images = cfgs.get('log_freq_images', 1000)
self.log_train_images = cfgs.get('log_train_images', False)
self.log_freq_losses = cfgs.get('log_freq_losses', 100)
self.visualize_validation = cfgs.get('visualize_validation', False)
self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
self.archive_code = cfgs.get('archive_code', True)
self.checkpoint_name = cfgs.get('checkpoint_name', None)
self.test_result_dir = cfgs.get('test_result_dir', None)
self.validate = cfgs.get('validate', False)
self.current_epoch = 0
self.logger = None
self.viz_input = None
self.dataset = cfgs.get('dataset', 'video')
self.train_with_cub = cfgs.get('train_with_cub', False)
self.train_with_kaggle = cfgs.get('train_with_kaggle', False)
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.metrics_trace = meters.MetricsTrace()
self.make_metrics = lambda m=None: meters.StandardMetrics(m)
self.batch_size = cfgs.get('batch_size', 64)
self.in_image_size = cfgs.get('in_image_size', 256)
self.out_image_size = cfgs.get('out_image_size', 256)
self.num_workers = cfgs.get('num_workers', 4)
self.run_train = cfgs.get('run_train', False)
self.train_data_dir = cfgs.get('train_data_dir', None)
self.val_data_dir = cfgs.get('val_data_dir', None)
self.run_test = cfgs.get('run_test', False)
self.test_data_dir = cfgs.get('test_data_dir', None)
self.train_loader, self.val_loader, self.test_loader = model.get_data_loaders(cfgs, self.dataset, in_image_size=self.in_image_size, out_image_size=self.out_image_size, batch_size=self.batch_size, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.train_data_dir, val_data_dir=self.val_data_dir, test_data_dir=self.test_data_dir)
if self.train_with_cub:
self.batch_size_cub = cfgs.get('batch_size_cub', 64)
self.data_dir_cub = cfgs.get('data_dir_cub', None)
self.train_loader_cub, self.val_loader_cub, self.test_loader_cub = model.get_data_loaders(cfgs, 'cub', in_image_size=self.in_image_size, batch_size=self.batch_size_cub, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_cub, val_data_dir=self.data_dir_cub, test_data_dir=self.data_dir_cub)
if self.train_with_kaggle:
self.batch_size_kaggle = cfgs.get('batch_size_kaggle', 64)
self.data_dir_kaggle = cfgs.get('data_dir_kaggle', None)
self.train_loader_kaggle, self.val_loader_kaggle, self.test_loader_kaggle = model.get_data_loaders(cfgs, 'kaggle', in_image_size=self.in_image_size, batch_size=self.batch_size_kaggle, num_workers=self.num_workers, run_train=self.run_train, run_test=self.run_test, train_data_dir=self.data_dir_kaggle, val_data_dir=self.data_dir_kaggle, test_data_dir=self.data_dir_kaggle)
if self.use_total_iterations:
# reset the epoch related cfgs
train_data_dir = cfgs.get("train_data_dir", None)
if isinstance(train_data_dir, str):
num_of_classes = 1
elif isinstance(train_data_dir, dict):
num_of_classes = len(train_data_dir)
dataloader_length = 0
for class_idx in range(num_of_classes):
dataloader_length += len(self.train_loader[class_idx])
total_epoch = int(self.num_iterations / dataloader_length) + 1
print(f'run for {total_epoch} epochs')
for k, v in cfgs.items():
if 'epoch' in k:
if isinstance(v, list):
new_v = [int(total_epoch * x / 120) for x in v]
cfgs[k] = new_v
elif isinstance(v, int):
new_v = int(total_epoch * v / 120) + 1
cfgs[k] = new_v
else:
continue
self.num_epochs = total_epoch
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.cfgs = cfgs
self.model = model(cfgs)
self.model.trainer = self
self.save_result_freq = cfgs.get('save_result_freq', None)
self.train_result_dir = osp.join(self.checkpoint_dir, 'results')
def load_checkpoint(self, optim=True):
"""Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
if self.checkpoint_name is not None:
checkpoint_path = osp.join(self.checkpoint_dir, self.checkpoint_name)
else:
checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
if len(checkpoints) == 0:
return 0, 0
checkpoint_path = checkpoints[-1]
self.checkpoint_name = osp.basename(checkpoint_path)
print(f"Loading checkpoint from {checkpoint_path}")
cp = torch.load(checkpoint_path, map_location=self.device)
self.model.load_model_state(cp)
if optim:
self.model.load_optimizer_state(cp)
self.metrics_trace = cp['metrics_trace']
epoch = cp['epoch']
total_iter = cp['total_iter']
return epoch, total_iter
def save_checkpoint(self, epoch, total_iter=0, optim=True):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
state_dict = self.model.get_model_state()
if optim:
optimizer_state = self.model.get_optimizer_state()
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
if self.keep_num_checkpoint > 0:
misc.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint)
def save_clean_checkpoint(self, path):
"""Save model state only to specified path."""
torch.save(self.model.get_model_state(), path)
def reset_viz_data_iterator(self):
self.viz_data_iterator = iter(self.val_loader) if self.visualize_validation else iter(self.train_loader)
def reset_cub_train_data_iterator(self):
self.cub_train_data_iterator = iter(self.train_loader_cub)
def reset_cub_viz_data_iterator(self):
self.cub_viz_data_iterator = iter(self.val_loader_cub) if self.visualize_validation else iter(self.train_loader_cub)
def test(self):
"""Perform testing."""
self.model.to(self.device)
self.model.set_eval()
epoch, self.total_iter = self.load_checkpoint(optim=False)
if self.test_result_dir is None:
self.test_result_dir = osp.join(self.checkpoint_dir, f'test_results_{self.checkpoint_name}'.replace('.pth', ''))
print(f"Saving testing results to {self.test_result_dir}")
with torch.no_grad():
for iteration, batch in enumerate(self.test_loader):
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.test_result_dir, which_data=self.dataset, is_training=False)
print(f"T{epoch:04}/{iteration:05}")
score_path = osp.join(self.test_result_dir, 'all_metrics.txt')
# self.model.save_scores(score_path)
def train(self):
"""Perform training."""
# archive code and configs
if self.archive_code:
misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)
# initialize
start_epoch = 0
self.total_iter = 0
self.metrics_trace.reset()
self.model.to(self.device)
self.model.reset_optimizers()
# resume from checkpoint
if self.resume:
start_epoch, self.total_iter = self.load_checkpoint(optim=True)
# train with cub
if self.train_with_cub:
self.cub_train_data_iterator = indefinite_generator(self.train_loader_cub)
# initialize tensorboard logger
if self.use_logger:
wandb.tensorboard.patch(root_logdir=osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")))
wandb.init(name=self.checkpoint_dir.split("/")[-1], project="APT36K")
#wandb.tensorboard.patch(save=False, tensorboard_x=True)
from torch.utils.tensorboard import SummaryWriter
self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
self.viz_data_iterator = indefinite_generator(self.val_loader) if self.visualize_validation else indefinite_generator(self.train_loader)
if self.fix_viz_batch:
self.viz_batch = next(self.viz_data_iterator)
# train with cub
if self.train_with_cub:
self.cub_viz_data_iterator = indefinite_generator(self.val_loader_cub) if self.visualize_validation else indefinite_generator(self.train_loader_cub)
if self.fix_viz_batch:
self.viz_batch_cub = next(self.cub_viz_data_iterator)
# run epochs
epoch = 0
for epoch in range(start_epoch, self.num_epochs):
metrics = self.run_epoch(epoch)
self.metrics_trace.append("train", metrics)
if (epoch+1) % self.save_checkpoint_freq == 0:
self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
if self.cfgs.get('pyplot_metrics', True):
self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
wandb.finish()
print(f"Training completed for all {epoch+1} epochs.")
def run_epoch(self, epoch):
metrics = self.make_metrics()
self.model.set_train()
for iteration, batch in enumerate(self.train_loader):
self.total_iter += 1
num_seqs, num_frames = batch[0].shape[:2]
total_im_num = num_seqs*num_frames
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True)
if self.train_with_cub and epoch >= self.cub_start_epoch:
batch_cub = next(self.cub_train_data_iterator)
num_seqs, num_frames = batch_cub[0].shape[:2]
total_im_num += num_seqs*num_frames
m_cub = self.model.forward(batch_cub, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data='cub', is_training=True)
m.update({'cub_'+k: v for k,v in m_cub.items()})
m['total_loss'] = self.model.total_loss
self.model.backward()
metrics.update(m, total_im_num)
print(f"T{epoch:04}/{iteration:05}/{metrics}")
## reset optimizers
if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
self.model.reset_optimizers()
if self.use_logger:
if self.total_iter % self.log_freq_losses == 0:
for name, loss in m.items():
label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
self.logger.add_scalar(label, loss, self.total_iter)
if self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
with torch.no_grad():
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=True, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False)
torch.cuda.empty_cache()
if self.total_iter % self.log_freq_images == 0:
with torch.no_grad():
if self.log_train_images:
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=True)
if self.fix_viz_batch:
batch = self.viz_batch
elif self.visualize_validation:
batch = next(self.viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='val_', is_training=False)
for name, loss in m.items():
self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)
if self.train_with_cub and epoch >= self.cub_start_epoch:
if self.log_train_images:
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_train_', is_training=True)
if self.fix_viz_batch:
batch_cub = self.viz_batch_cub
elif self.visualize_validation:
batch_cub = next(self.cub_viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
m = self.model.forward(batch_cub, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data='cub', logger_prefix='cub_val_', is_training=False)
for name, loss in m.items():
self.logger.add_scalar(f'cub_loss_val/{name}', loss, self.total_iter)
torch.cuda.empty_cache()
self.model.scheduler_step()
return metrics
|