File size: 5,738 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
from typing import Union, List, Tuple
import os
import video3d.utils.misc as misc
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class Transformer_layer(nn.Module):
    def __init__(self, dim_feat=384, dim=1024, hidden_dim=1024, heads=16):
        super().__init__()
        '''
        dim: the dim between each attention, mlp, also the input and output dim for the layer
        hidden_dim: the dim inside qkv
        dim_feat: condition feature dim
        '''
        dim_head = hidden_dim // heads
        self.heads = heads
        self.scale = dim_head ** -0.5  # 8

        self.norm = nn.LayerNorm(dim)
        self.ffn = FeedForward(
            dim=dim,
            hidden_dim=(4 * dim),
            dropout=0.
        )

        # cross attention part
        self.to_cross_q = nn.Linear(dim, hidden_dim, bias=False)
        self.to_cross_kv = nn.Linear(dim_feat, hidden_dim*2, bias=False)
        self.cross_attend = nn.Softmax(dim=-1)

        # self attention part
        self.to_self_qkv = nn.Linear(dim, hidden_dim*3, bias=False)
        self.self_attend = nn.Softmax(dim=-1)

    def forward_cross_attn(self, x, feature):
        x = self.norm(x)

        q = self.to_cross_q(x)
        k, v = self.to_cross_kv(feature).chunk(2, dim=-1)
        qkv = (q, k, v)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = self.cross_attend(dots)
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return out
    
    def forward_self_attn(self, x):
        x = self.norm(x)
        qkv = self.to_self_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = self.self_attend(dots)
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return out
    
    def forward(self, x, feature):
        '''
        x: [B, N, dim]
        feature: [B, N, dim_feat]
        '''
        cross_token = self.forward_cross_attn(x, feature)
        cross_token = cross_token + x

        self_token = self.forward_self_attn(cross_token)
        self_token = self_token + cross_token

        out = self.ffn(self_token)
        out = out + self_token

        return out
    

class Triplane_Transformer(nn.Module):
    def __init__(self, emb_dim=1024, emb_num=1024, num_layers=16,
                 triplane_dim=80, triplane_scale=7.):
        super().__init__()

        self.learnable_embedding = nn.Parameter(torch.randn(1, emb_num, emb_dim))
        self.layers = nn.ModuleList([])
        for _ in range(num_layers):
            self.layers.append(
                Transformer_layer(
                    dim_feat=384,
                    dim=emb_dim,
                    hidden_dim=emb_dim
                )
            )
        
        self.triplane_dim = triplane_dim
        self.triplane_scale = triplane_scale

        self.to_triplane = nn.ConvTranspose2d(
            in_channels=emb_dim,
            out_channels=3 * triplane_dim,
            kernel_size=4,
            padding=1,
            stride=2
        )

        self.norm = nn.LayerNorm(emb_dim)
    
    def sample_feat(self, feat_maps, pts):
        '''
        feat_maps: [B, 3, C, H, W]
        pts: [B, K, 3]
        '''
        pts = pts / (self.triplane_scale / 2)

        pts_xy = pts[..., [0,1]]
        pts_yz = pts[..., [1,2]]
        pts_xz = pts[..., [0,2]]

        feat_xy = feat_maps[:, 0, :, :, :]
        feat_yz = feat_maps[:, 1, :, :, :]
        feat_xz = feat_maps[:, 2, :, :, :]

        sampled_feat_xy = F.grid_sample(
            feat_xy, pts_xy.unsqueeze(1), mode='bilinear', align_corners=True
        )
        sampled_feat_yz = F.grid_sample(
            feat_yz, pts_yz.unsqueeze(1), mode='bilinear', align_corners=True
        )
        sampled_feat_xz = F.grid_sample(
            feat_xz, pts_xz.unsqueeze(1), mode='bilinear', align_corners=True
        )

        sampled_feat = torch.cat([sampled_feat_xy, sampled_feat_yz, sampled_feat_xz], dim=1).squeeze(-2)  # [B, F, K]
        sampled_feat = sampled_feat.permute(0, 2, 1)
        return sampled_feat
        
    def forward(self, feature, pts):
        '''
        feature: [B, N, dim_feat]
        '''
        batch_size = feature.shape[0]
        embedding = self.learnable_embedding.repeat(batch_size, 1, 1)

        x = embedding
        for layer in self.layers:
            x = layer(x, feature)
        x = self.norm(x)
        # x: [B, 32x32, 1024]
        batch_size, pwph, feat_dim = x.shape
        ph = int(pwph ** 0.5)
        pw = int(pwph ** 0.5)
        triplane_feat = x.reshape(batch_size, ph, pw, feat_dim).permute(0, 3, 1, 2)
        triplane_feat = self.to_triplane(triplane_feat)  # [B, C, 64, 64]

        triplane_feat = triplane_feat.reshape(triplane_feat.shape[0], 3, self.triplane_dim, triplane_feat.shape[-2], triplane_feat.shape[-1])

        pts_feat = self.sample_feat(triplane_feat, pts)

        return pts_feat