Spaces:
Runtime error
Runtime error
File size: 23,686 Bytes
98a77e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import math
import torch
import torch.nn as nn
from . import geometry
from einops import rearrange
import itertools
def _joints_to_bones(joints, bones_idxs):
bones = []
for a, b in bones_idxs:
bones += [torch.stack([joints[:, :, a, :], joints[:, :, b, :]], dim=2)]
bones = torch.stack(bones, dim=2)
return bones
def _compute_vertices_to_bones_weights(bones_pred, seq_shape_pred, temperature=1):
vertices_to_bones = []
for i in range(bones_pred.shape[2]):
vertices_to_bones += [geometry.line_segment_distance(bones_pred[:, :, i, 0], bones_pred[:, :, i, 1], seq_shape_pred)]
# vertices_to_bones = nn.functional.softmax(1 / torch.stack(vertices_to_bones) / temperature, dim=0)
vertices_to_bones = nn.functional.softmax(-torch.stack(vertices_to_bones) / temperature, dim=0)
return vertices_to_bones
def build_kinematic_chain(n_bones, start_bone_idx):
# build bones and kinematic chain starting from leaf bone (body joint)
bones_to_joints = []
kinematic_chain = []
bone_idx = start_bone_idx
# bones from leaf to root
dependent_bones = []
for i in range(n_bones):
bones_to_joints += [(i + 1, i)]
kinematic_chain = [(bone_idx, dependent_bones)] + kinematic_chain # parent is always in the front
dependent_bones = dependent_bones + [bone_idx]
bone_idx += 1
return bones_to_joints, kinematic_chain, dependent_bones
def update_body_kinematic_chain(kinematic_chain, leg_kinematic_chain, body_bone_idx, leg_bone_idxs, attach_legs_to_body=True):
if attach_legs_to_body:
for bone_idx, dependent_bones in kinematic_chain:
if bone_idx == body_bone_idx or body_bone_idx in dependent_bones:
dependent_bones += leg_bone_idxs
kinematic_chain = kinematic_chain + leg_kinematic_chain # parent is always in the front
return kinematic_chain
def lift_points_mesh(points, seq_shape, size_aspect=0.5):
"""
for a set of points that's generated by linear interpolation, lift them in y-axis to match the actual bones
this operates on all the joint points except for the first and last one
"""
points_to_lift = points[:, :, 1:-1, :]
points_z_range_max = points_to_lift[..., 2] - size_aspect * (points_to_lift[..., 2] - points[:, :, :-2, 2])
points_z_range_min = points_to_lift[..., 2] - size_aspect * (points_to_lift[..., 2] - points[:, :, 2:, 2])
points_z_range_min = points_z_range_min.unsqueeze(-1).expand(-1, -1, -1, seq_shape.shape[-2])
points_z_range_max = points_z_range_max.unsqueeze(-1).expand(-1, -1, -1, seq_shape.shape[-2])
valid_points = seq_shape.unsqueeze(2).expand(-1, -1, points_to_lift.shape[-2], -1, -1)
valid_idx_1 = valid_points[..., 2] > points_z_range_min
valid_idx_2 = valid_points[..., 2] < points_z_range_max
valid_idx = valid_idx_1 * valid_idx_2
valid_idx = valid_idx.float()
valid_y = valid_points[..., 1] * valid_idx + (-1e6) * (1 - valid_idx)
valid_y, _ = valid_y.max(dim=-1)
is_valid = valid_y != (-1e6)
is_valid = is_valid.float()
points[:, :, 1:-1, 1] = points[:, :, 1:-1, 1] * (1-is_valid) + valid_y * is_valid
return points
@torch.no_grad()
def estimate_bones(seq_shape, n_body_bones, resample=False, n_legs=4, n_leg_bones=0, body_bones_type='z_minmax', compute_kinematic_chain=True, aux=None, attach_legs_to_body=True, bone_y_threshold=None, body_bone_idx_preset=[3, 5, 5, 3]):
"""
Estimate the position and structure of bones given the mesh vertex positions.
Args:
seq_shape: a tensor of shape (B, F, V, 3), the batched position of mesh vertices.
n_body_bones: an integer, the desired number of bones.
Returns:
(bones_pred, kinematic_chain) where
bones_pred: a tensor of shape (B, F, num_bones, 2, 3)
kinematic_chain: a list of tuples of length n_body_bones; for each tuple, the first element is the bone index while
the second element is a list of bones indices of dependent bones.
"""
# preprocess shape
if resample:
b, _, n, _ = seq_shape.shape
seq_shape = geometry.sample_farthest_points(rearrange(seq_shape, 'b f n d -> (b f) d n'), n // 4)
seq_shape = rearrange(seq_shape, '(b f) d n -> b f n d', b=b)
if body_bones_type == 'max_distance':
raise NotImplementedError
# find two farthest points
# x is the symmetry plane, ignore it
# dists = torch.linalg.norm(seq_shape[:, :, None, :, 1:] - seq_shape[:, :, :, None, 1:], dim=-1) # Shape: (B, F, V, V)
# num_verts = dists.shape[-1]
# indices_flat = rearrange(dists, 'b f d1 d2 -> b f (d1 d2)').argmax(2) # Shape: (B, F)
# indices = torch.cat([(indices_flat // num_verts)[..., None], (indices_flat % num_verts)[..., None]], dim=2) # Shape: (B, F, 2)
# indices_gather = indices[..., None].repeat(1, 1, 1, 3) # Shape: (B, F, 2, 3)
# points = seq_shape.gather(2, indices_gather) # Shape: (B, F, 2, 3)
# fix the points order along z axis
# z_coordinate = points[:, :, :, 2] # Shape: (B, F, 2)
# front = z_coordinate < 0
# point_a = rearrange(points[~front], '(b f) d -> b f d', b=seq_shape.shape[0]) # Shape: (B, F, 3)
# point_b = rearrange(points[front], '(b f) d -> b f d', b=seq_shape.shape[0]) # Shape: (B, F, 3)
elif body_bones_type == 'z_minmax':
indices_max, indices_min = seq_shape[..., 2].argmax(dim=2), seq_shape[..., 2].argmin(dim=2)
indices = torch.cat([indices_max[..., None], indices_min[..., None]], dim=2)
indices_gather = indices[..., None].repeat(1, 1, 1, 3) # Shape: (B, F, 2, 3)
points = seq_shape.gather(2, indices_gather)
point_a = points[:, :, 0, :]
point_b = points[:, :, 1, :]
elif body_bones_type == 'z_minmax_y+':
## TODO: mean may not be very robust, as inside is noisy
mid_point = seq_shape.mean(2)
seq_shape_pos_y_mask = (seq_shape[:, :, :, 1] > (mid_point[:, :, None, 1] - 0.5)).float() # y higher than midpoint
seq_shape_z = seq_shape[:, :, :, 2] * seq_shape_pos_y_mask + (-1e6) * (1 - seq_shape_pos_y_mask)
indices = seq_shape_z.argmax(2)
indices_gather = indices[..., None, None].repeat(1, 1, 1, 3)
point_a = seq_shape.gather(2, indices_gather).squeeze(2)
seq_shape_z = seq_shape[:, :, :, 2] * seq_shape_pos_y_mask + 1e6 * (1 - seq_shape_pos_y_mask)
indices = seq_shape_z.argmin(2)
indices_gather = indices[..., None, None].repeat(1, 1, 1, 3)
point_b = seq_shape.gather(2, indices_gather).squeeze(2)
elif body_bones_type == 'mine':
## TODO: mean may not be very robust, as inside is noisy
mid_point = seq_shape.mean(2)
seq_shape_pos_y_mask = (seq_shape[:, :, :, 1] > (mid_point[:, :, None, 1] - 0.5)).float() # y higher than midpoint
seq_shape_z = seq_shape[:, :, :, 2] * seq_shape_pos_y_mask + (-1e6) * (1 - seq_shape_pos_y_mask)
indices = seq_shape_z.argmax(2)
indices_gather = indices[..., None, None].repeat(1, 1, 1, 3)
point_a = seq_shape.gather(2, indices_gather).squeeze(2)
seq_shape_z = seq_shape[:, :, :, 2] * seq_shape_pos_y_mask + 1e6 * (1 - seq_shape_pos_y_mask)
indices = seq_shape_z.argmin(2)
indices_gather = indices[..., None, None].repeat(1, 1, 1, 3)
point_b = seq_shape.gather(2, indices_gather).squeeze(2)
else:
raise NotImplementedError
# place points on the symmetry axis
point_a[..., 0] = 0
point_b[..., 0] = 0
mid_point = seq_shape.mean(2) # Shape: (B, F, 3)
# place points on the symmetry axis
mid_point[..., 0] = 0
if n_leg_bones > 0:
mid_point[..., 1] += 0.5 # lift mid point a bit higher if there are legs
assert n_body_bones % 2 == 0
n_joints = n_body_bones + 1
blend = torch.linspace(0., 1., math.ceil(n_joints / 2), device=point_a.device)[None, None, :, None] # Shape: (1, 1, (n_joints + 1) / 2, 1)
joints_a = point_a[:, :, None, :] * (1 - blend) + mid_point[:, :, None, :] * blend
# point_a to mid_point
joints_b = point_b[:, :, None, :] * blend + mid_point[:, :, None, :] * (1 - blend)
# mid_point to point_b
joints = torch.cat([joints_a[:, :, :-1], joints_b], 2) # Shape: (B, F, n_joints, 3)
if body_bones_type == 'mine':
joints = lift_points_mesh(joints, seq_shape)
# build bones and kinematic chain starting from leaf bones
if compute_kinematic_chain:
aux = {}
half_n_body_bones = n_body_bones // 2
bones_to_joints = []
kinematic_chain = []
bone_idx = 0
# bones from point_a to mid_point
dependent_bones = []
for i in range(half_n_body_bones):
bones_to_joints += [(i + 1, i)]
kinematic_chain = [(bone_idx, dependent_bones)] + kinematic_chain # parent is always in the front
dependent_bones = dependent_bones + [bone_idx]
bone_idx += 1
# bones from point_b to mid_point
dependent_bones = []
for i in range(n_body_bones - 1, half_n_body_bones - 1, -1):
bones_to_joints += [(i, i + 1)]
kinematic_chain = [(bone_idx, dependent_bones)] + kinematic_chain # parent is always in the front
dependent_bones = dependent_bones + [bone_idx]
bone_idx += 1
aux['bones_to_joints'] = bones_to_joints
else:
bones_to_joints = aux['bones_to_joints']
kinematic_chain = aux['kinematic_chain']
bones_pred = _joints_to_bones(joints, bones_to_joints)
if n_leg_bones > 0:
assert n_legs == 4
# attach four legs
# y, z is symetry plain
# y axis is up
#
# top down view:
#
# |
# 2 | 1
# -------|------ > x
# 3 | 0
# ⌄
# z
#
# find a point with the lowest y in each quadrant
# max_dist = (point_a - point_b).norm(p=2, dim=-1)
xs, ys, zs = seq_shape.unbind(-1)
# if bone_y_threshold is not None:
# flags = (ys < bone_y_threshold)
# x_margin = (xs[flags].quantile(0.95) - xs[flags].quantile(0.05)) * 0.2
# x0 = xs[flags].quantile(0.5)
# else:
# x_margin = (xs.quantile(0.95) - xs.quantile(0.05)) * 0.2
# x0 = 0
if bone_y_threshold is None:
x_margin = (xs.quantile(0.95) - xs.quantile(0.05)) * 0.2
x0 = 0
quadrant0 = torch.logical_and(xs - x0 > x_margin, zs > 0)
quadrant1 = torch.logical_and(xs - x0 > x_margin, zs < 0)
quadrant2 = torch.logical_and(xs - x0 < -x_margin, zs < 0)
quadrant3 = torch.logical_and(xs - x0 < -x_margin, zs > 0)
else:
y_threshold = ys.quantile(bone_y_threshold)
flags = (ys < y_threshold)
x0 = xs[flags].quantile(0.5)
z0 = zs[flags].quantile(0.5)
x_margin = (xs[flags].quantile(0.95) - xs[flags].quantile(0.05)) * 0.2
z_margin = (zs[flags].quantile(0.95) - zs[flags].quantile(0.05)) * 0.2
# quadrant0 = torch.logical_and(xs - x0 > x_margin, zs > z0)
# quadrant1 = torch.logical_and(xs - x0 > x_margin, zs < z0)
# quadrant2 = torch.logical_and(xs - x0 < -x_margin, zs < z0)
# quadrant3 = torch.logical_and(xs - x0 < -x_margin, zs > z0)
quadrant0 = torch.logical_and(xs - x0 > x_margin, zs - z0 > z_margin)
quadrant1 = torch.logical_and(xs - x0 > x_margin, zs < z0)
quadrant2 = torch.logical_and(xs - x0 < -x_margin, zs < z0)
quadrant3 = torch.logical_and(xs - x0 < -x_margin, zs - z0 > z_margin)
def find_leg_in_quadrant(quadrant, n_bones, body_bone_idx, body_bones_type=None):
all_joints = torch.zeros([seq_shape.shape[0], seq_shape.shape[1], n_bones + 1, 3], dtype=seq_shape.dtype, device=seq_shape.device)
for b in range(seq_shape.shape[0]):
for f in range(seq_shape.shape[1]):
# find a point with the lowest y
quadrant_points = seq_shape[b, f][quadrant[b, f]]
if len(quadrant_points.view(-1)) < 1:
import pdb; pdb.set_trace()
idx = torch.argmin(quadrant_points[:, 1]) ## lowest y
foot = quadrant_points[idx]
# find closest point on the body joints (the end joint of the bone)
if body_bone_idx is None:
body_bone_idx_1 = int(torch.argmin(torch.norm(bones_pred[b, f, :, 1] - foot[None], dim=1)))
body_bone_idx_2 = int(torch.argmin((bones_pred[b, f, :, 1, 2] - foot[None, 2]).abs())) # closest in z axis
# if the body_bone_idx_1 is 4, then should use body_bone_idx_2
# body_bone_idx = body_bone_idx_1 if body_bone_idx_1 != 4 else body_bone_idx_2 # this is used for distribution loss caused tilt effect
body_bone_idx = body_bone_idx_2
body_joint = bones_pred[b, f, body_bone_idx, 1]
# create bone structure from the foot to the body joint
blend = torch.linspace(0., 1., n_bones + 1, device=seq_shape.device)[:, None]
joints = foot[None] * (1 - blend) + body_joint[None] * blend
all_joints[b, f] = joints
return all_joints, body_bone_idx
quadrants = [quadrant0, quadrant1, quadrant2, quadrant3]
# body_bone_idxs = [None, None, None, None]
# body_bone_idxs = [3, 5, 5, 3]
# body_bone_idxs = [2, 6, 6, 2]
# body_bone_idxs = [2, 7, 7, 2]
# body_bone_idxs = [3, 6, 6, 3]
if body_bone_idx_preset == [0, 0, 0, 0]:
body_bone_idx_preset = [None, None, None, None]
body_bone_idxs = body_bone_idx_preset
start_bone_idx = n_body_bones
all_leg_bones = []
if compute_kinematic_chain:
leg_auxs = []
else:
leg_auxs = aux['legs']
for i, quadrant in enumerate(quadrants):
if compute_kinematic_chain:
leg_i_aux = {}
body_bone_idx = body_bone_idxs[i]
if i == 2:
body_bone_idx = body_bone_idxs[1]
elif i == 3:
body_bone_idx = body_bone_idxs[0]
leg_joints, body_bone_idx = find_leg_in_quadrant(quadrant, n_leg_bones, body_bone_idx=body_bone_idx, body_bones_type=body_bones_type)
body_bone_idxs[i] = body_bone_idx
leg_bones_to_joints, leg_kinematic_chain, leg_bone_idxs = build_kinematic_chain(n_leg_bones, start_bone_idx=start_bone_idx)
kinematic_chain = update_body_kinematic_chain(kinematic_chain, leg_kinematic_chain, body_bone_idx, leg_bone_idxs, attach_legs_to_body=attach_legs_to_body)
leg_i_aux['body_bone_idx'] = body_bone_idx
leg_i_aux['leg_bones_to_joints'] = leg_bones_to_joints
start_bone_idx += n_leg_bones
else:
leg_i_aux = leg_auxs[i]
body_bone_idx = leg_i_aux['body_bone_idx']
leg_joints, _ = find_leg_in_quadrant(quadrant, n_leg_bones, body_bone_idx, body_bones_type=body_bones_type)
leg_bones_to_joints = leg_i_aux['leg_bones_to_joints']
leg_bones = _joints_to_bones(leg_joints, leg_bones_to_joints)
all_leg_bones += [leg_bones]
if compute_kinematic_chain:
leg_auxs += [leg_i_aux]
all_bones = [bones_pred] + all_leg_bones
all_bones = torch.cat(all_bones, dim=2)
else:
all_bones = bones_pred
if compute_kinematic_chain:
aux['kinematic_chain'] = kinematic_chain
if n_leg_bones > 0:
aux['legs'] = leg_auxs
return all_bones.detach(), kinematic_chain, aux
else:
return all_bones.detach()
def _estimate_bone_rotation(forward):
"""
(0, 0, 1) = matmul(b, R^(-1))
assumes y, z is a symmetry plane
returns R
"""
forward = nn.functional.normalize(forward, p=2, dim=-1)
right = torch.FloatTensor([[1, 0, 0]]).to(forward.device)
right = right.expand_as(forward)
up = torch.cross(forward, right, dim=-1)
up = nn.functional.normalize(up, p=2, dim=-1)
right = torch.cross(up, forward, dim=-1)
up = nn.functional.normalize(up, p=2, dim=-1)
R = torch.stack([right, up, forward], dim=-1)
return R
def children_to_parents(kinematic_tree):
"""
converts list [(bone1, [children1, ...]), (bone2, [children1, ...]), ...] to [(bone1, [parent1, ...]), ....]
"""
parents = []
for bone_id, _ in kinematic_tree:
# establish a kinematic chain with current bone as the leaf bone
parents_ids = [parent_id for parent_id, children in kinematic_tree if bone_id in children]
parents += [(bone_id, parents_ids)]
return parents
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
""" [Borrowed from PyTorch3D]
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
""" [Borrowed from PyTorch3D]
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
def _prepare_transform_mtx(rotation=None, translation=None):
mtx = torch.eye(4)[None]
if rotation is not None:
if len(mtx) != len(rotation):
assert len(mtx) == 1
mtx = mtx.repeat(len(rotation), 1, 1)
mtx = mtx.to(rotation.device)
mtx[:, :3, :3] = rotation
if translation is not None:
if len(mtx) != len(translation):
assert len(mtx) == 1
mtx = mtx.repeat(len(translation), 1, 1)
mtx = mtx.to(translation.device)
mtx[:, :3, 3] = translation
return mtx
def _invert_transform_mtx(mtx):
inv_mtx = torch.eye(4)[None].repeat(len(mtx), 1, 1).to(mtx.device)
rotation = mtx[:, :3, :3]
translation = mtx[:, :3, 3]
inv_mtx[:, :3, :3] = rotation.transpose(1, 2)
inv_mtx[:, :3, 3] = -torch.bmm(rotation.transpose(1, 2), translation.unsqueeze(-1)).squeeze(-1)
return inv_mtx
def skinning(v_pos, bones_pred, kinematic_tree, deform_params, output_posed_bones=False, temperature=1):
"""
"""
device = deform_params.device
batch_size, num_frames = deform_params.shape[:2]
shape = v_pos
# Associate vertices to bones
vertices_to_bones = _compute_vertices_to_bones_weights(bones_pred, shape.detach(), temperature=temperature) # Shape: (num_bones, B, F, V)
rots_pred = deform_params
# Rotate vertices based on bone assignments
frame_shape_pred = []
if output_posed_bones:
posed_bones = bones_pred.clone()
if posed_bones.shape[0] != batch_size or posed_bones.shape[1] != num_frames:
posed_bones = posed_bones.repeat(batch_size, num_frames, 1, 1, 1) # Shape: (B, F, num_bones, 2, 3)
# Go through each bone
for bone_id, _ in kinematic_tree:
# Establish a kinematic chain with current bone as the leaf bone
## TODO: this assumes the parents is always in the front of the list
parents_ids = [parent_id for parent_id, children in kinematic_tree if bone_id in children]
chain_ids = parents_ids + [bone_id]
# Chain from leaf to root
chain_ids = chain_ids[::-1]
# Go through the kinematic chain from leaf to root and compose transformation
transform_mtx = torch.eye(4)[None].to(device)
for i in chain_ids:
# Establish transformation
rest_joint = bones_pred[:, :, i, 0, :].view(-1, 3)
rest_bone_vector = bones_pred[:, :, i, 1, :] - bones_pred[:, :, i, 0, :]
rest_bone_rot = _estimate_bone_rotation(rest_bone_vector.view(-1, 3))
rest_bone_mtx = _prepare_transform_mtx(rotation=rest_bone_rot, translation=rest_joint)
rest_bone_inv_mtx = _invert_transform_mtx(rest_bone_mtx)
# Transform to the bone local frame
transform_mtx = torch.matmul(rest_bone_inv_mtx, transform_mtx)
# Rotate the mesh in the bone local frame
rot_pred = rots_pred[:, :, i]
rot_pred_mat = euler_angles_to_matrix(rot_pred.view(-1, 3), convention='XYZ')
rot_pred_mtx = _prepare_transform_mtx(rotation=rot_pred_mat, translation=None)
transform_mtx = torch.matmul(rot_pred_mtx, transform_mtx)
# Transform to the world frame
transform_mtx = torch.matmul(rest_bone_mtx, transform_mtx)
# Transform vertices
shape4 = rearrange(torch.cat([shape, torch.ones_like(shape[...,:1])], dim=-1), 'b f ... -> (b f) ...')
seq_shape_bone = torch.matmul(shape4, transform_mtx.transpose(-2, -1))[..., :3]
seq_shape_bone = rearrange(seq_shape_bone, '(b f) ... -> b f ...', b=batch_size, f=num_frames)
if output_posed_bones:
bones4 = torch.cat([rearrange(posed_bones[:, :, bone_id], 'b f ... -> (b f) ...'), torch.ones(batch_size * num_frames, 2, 1).to(device)], dim=-1)
posed_bones[:, :, bone_id] = rearrange(torch.matmul(bones4, transform_mtx.transpose(-2, -1))[..., :3], '(b f) ... -> b f ...', b=batch_size, f=num_frames)
# Transform mesh with weights
frame_shape_pred += [vertices_to_bones[bone_id, ..., None] * seq_shape_bone]
frame_shape_pred = sum(frame_shape_pred)
aux = {}
aux['bones_pred'] = bones_pred
aux['vertices_to_bones'] = vertices_to_bones
if output_posed_bones:
aux['posed_bones'] = posed_bones
return frame_shape_pred, aux
|