TTP / opencd /models /change_detectors /siamencoder_multidecoder.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
15 kB
# Copyright (c) Open-CD. All rights reserved.
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.models.utils import resize
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from opencd.registry import MODELS
from .siamencoder_decoder import SiamEncoderDecoder
@MODELS.register_module()
class SiamEncoderMultiDecoder(SiamEncoderDecoder):
"""SiamEncoder Multihead Decoder segmentors.
SiamEncoderMultiDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
Args:
postprocess_pred_and_label (str, optional): Whether to post-process the
`pred` and `label` when predicting. Defaults to None.
"""
def __init__(self, postprocess_pred_and_label=None, **kwargs):
super().__init__(**kwargs)
self.postprocess_pred_and_label = postprocess_pred_and_label
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``"""
# for binary branches
self.decode_head = MODELS.build(decode_head)
self.num_classes = self.decode_head.binary_cd_head.num_classes
self.out_channels = self.decode_head.binary_cd_head.out_channels
# for sementic branches
self.semantic_num_classes = self.decode_head.semantic_cd_head.num_classes
self.semantic_out_channels = self.decode_head.semantic_cd_head.out_channels
self.align_corners = {
'seg_logits': self.decode_head.binary_cd_head.align_corners,
'seg_logits_from': self.decode_head.semantic_cd_head.align_corners,
'seg_logits_to': self.decode_head.semantic_cd_head_aux.align_corners}
self.thresholds = {
'seg_logits': self.decode_head.binary_cd_head.threshold,
'seg_logits_from': self.decode_head.semantic_cd_head.threshold,
'seg_logits_to': self.decode_head.semantic_cd_head_aux.threshold}
def extract_feat(self, inputs: Tensor) -> List[Tensor]:
"""Extract features from images."""
# `in_channels` is not in the ATTRIBUTE for some backbone CLASS.
img_from, img_to = torch.split(inputs, self.backbone_inchannels, dim=1)
feat_from = self.backbone(img_from)
feat_to = self.backbone(img_to)
if self.with_neck:
feat_from = self.neck(feat_from)
feat_to = self.neck(feat_to)
x = (feat_from, feat_to)
return x
def slide_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The segmentation results, seg_logits from model of each
input image.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
semantic_channels = self.semantic_out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = dict(
seg_logits=inputs.new_zeros((batch_size, out_channels, h_img, w_img)),
seg_logits_from=inputs.new_zeros((batch_size, semantic_channels, h_img, w_img)),
seg_logits_to=inputs.new_zeros((batch_size, semantic_channels, h_img, w_img))
)
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is seg logits tensor map
# with shape [N, C, H, W]
crop_seg_logits = self.encode_decode(crop_img, batch_img_metas)
for seg_name, crop_seg_logit in crop_seg_logits.items():
preds[seg_name] += F.pad(crop_seg_logit,
(int(x1), int(preds[seg_name].shape[3] - x2), int(y1),
int(preds[seg_name].shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
for seg_name, pred in preds.items():
preds[seg_name] = pred / count_mat
return preds
# def aug_test(self, inputs, batch_img_metas, rescale=True):
# """Test with augmentations.
# Only rescale=True is supported.
# """
# # aug_test rescale all imgs back to ori_shape for now
# assert rescale
# # to save memory, we get augmented seg logit inplace
# seg_logits = self.inference(inputs[0], batch_img_metas[0], rescale)
# for i in range(1, len(inputs)):
# cur_seg_logits = self.inference(inputs[i], batch_img_metas[i], rescale)
# for seg_name, cur_seg_logit in cur_seg_logits.items():
# seg_logits[seg_name] += cur_seg_logit
# for seg_name, seg_logit in seg_logits.items():
# seg_logits[seg_name] /= len(inputs)
# seg_preds = []
# for seg_name, seg_logit in seg_logits.items():
# if (self.out_channels == 1 and seg_name == 'seg_logits') \
# or (self.semantic_out_channels == 1 \
# and ("from" in seg_name or "to" in seg_name)):
# seg_pred = (seg_logit >
# self.thresholds[seg_name]).to(seg_logit).squeeze(1)
# else:
# seg_pred = seg_logit.argmax(dim=1)
# # unravel batch dim
# seg_pred = list(seg_pred)
# seg_preds.append(seg_pred)
# # (3, B, H, W) -> (B, 3, H, W)
# seg_preds = [list(pred) for pred in list(zip(*seg_preds))]
# return seg_preds
def postprocess_result(self,
seg_logits: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
seg_logits (Tensor): The segmentation results, seg_logits from
model of each input image.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Segmentation results of the
input images. Each SegDataSample usually contain:
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic
segmentation before normalization.
"""
C = dict()
for seg_name, seg_logit in seg_logits.items():
batch_size, _C, H, W = seg_logit.shape
C[seg_name] = _C
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
for seg_name, seg_logit in seg_logits.items():
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_seg_logit shape is 1, C, H, W after remove padding
i_seg_logit = seg_logit[i:i + 1, :,
padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_seg_logit = i_seg_logit.flip(dims=(3, ))
else:
i_seg_logit = i_seg_logit.flip(dims=(2, ))
# resize as original shape
i_seg_logit = resize(
i_seg_logit,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners[seg_name],
warning=False).squeeze(0)
else:
i_seg_logit = seg_logit[i]
if C[seg_name] > 1:
i_seg_pred = i_seg_logit.argmax(dim=0, keepdim=True)
else:
i_seg_logit = i_seg_logit.sigmoid()
i_seg_pred = (i_seg_logit >
self.thresholds[seg_name]).to(i_seg_logit)
pred_name = '_' + seg_name.split('_')[-1] \
if seg_name.split('_')[-1] in ['from', 'to'] else ''
pred_name = 'pred_sem_seg' + pred_name
data_samples[i].set_data({
seg_name:
PixelData(**{'data': i_seg_logit}),
pred_name:
PixelData(**{'data': i_seg_pred})
})
if self.postprocess_pred_and_label is not None:
if self.postprocess_pred_and_label == 'cover_semantic':
for data_sample in data_samples:
# postprocess_semantic_pred
data_sample.pred_sem_seg_from.data = data_sample.pred_sem_seg_from.data + 1
data_sample.pred_sem_seg_to.data = data_sample.pred_sem_seg_to.data + 1
data_sample.pred_sem_seg_from.data = data_sample.pred_sem_seg_from.data * \
data_sample.pred_sem_seg.data
data_sample.pred_sem_seg_to.data = data_sample.pred_sem_seg_to.data * \
data_sample.pred_sem_seg.data
# postprocess_semantic_label
data_sample.gt_sem_seg_from.data[data_sample.gt_sem_seg_from.data == 255] = -1
data_sample.gt_sem_seg_from.data = data_sample.gt_sem_seg_from.data + 1
data_sample.gt_sem_seg_to.data[data_sample.gt_sem_seg_to.data == 255] = -1
data_sample.gt_sem_seg_to.data = data_sample.gt_sem_seg_to.data + 1
else:
raise ValueError(
f'`postprocess_pred_and_label` should be `cover_semantic` or None.')
return data_samples
# for seg_name, seg_logit in seg_logits.items():
# batch_size, C, H, W = seg_logit.shape
# if data_samples is None:
# data_samples = [SegDataSample() for _ in range(batch_size)]
# only_prediction = True
# else:
# only_prediction = False
# for i in range(batch_size):
# if not only_prediction:
# img_meta = data_samples[i].metainfo
# # remove padding area
# if 'img_padding_size' not in img_meta:
# padding_size = img_meta.get('padding_size', [0] * 4)
# else:
# padding_size = img_meta['img_padding_size']
# padding_left, padding_right, padding_top, padding_bottom =\
# padding_size
# # i_seg_logit shape is 1, C, H, W after remove padding
# i_seg_logit = seg_logit[i:i + 1, :,
# padding_top:H - padding_bottom,
# padding_left:W - padding_right]
# flip = img_meta.get('flip', None)
# if flip:
# flip_direction = img_meta.get('flip_direction', None)
# assert flip_direction in ['horizontal', 'vertical']
# if flip_direction == 'horizontal':
# i_seg_logit = i_seg_logit.flip(dims=(3, ))
# else:
# i_seg_logit = i_seg_logit.flip(dims=(2, ))
# # resize as original shape
# i_seg_logit = resize(
# i_seg_logit,
# size=img_meta['ori_shape'],
# mode='bilinear',
# align_corners=self.align_corners[seg_name],
# warning=False).squeeze(0)
# else:
# i_seg_logit = seg_logit[i]
# if C > 1:
# i_seg_pred = i_seg_logit.argmax(dim=0, keepdim=True)
# else:
# i_seg_logit = F.sigmoid(i_seg_logit)
# i_seg_pred = (i_seg_logit >
# self.thresholds[seg_name]).to(i_seg_logit)
# data_samples[i].set_data({
# 'seg_logits':
# PixelData(**{'data': i_seg_logit}),
# 'pred_sem_seg':
# PixelData(**{'data': i_seg_pred})
# })
# seg_logits[seg_name] = data_samples
# return seg_logits