Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import tempfile | |
from pathlib import Path | |
import torch | |
from mmengine import Config, DictAction | |
from mmengine.logging import MMLogger | |
from mmengine.model import revert_sync_batchnorm | |
from mmengine.registry import init_default_scope | |
from mmseg.models import BaseSegmentor | |
from mmseg.registry import MODELS | |
from mmseg.structures import SegDataSample | |
try: | |
from mmengine.analysis import get_model_complexity_info | |
from mmengine.analysis.print_helper import _format_size | |
except ImportError: | |
raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.') | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Get the FLOPs of a segmentor') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[2048, 1024], | |
help='input image size') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def inference(args: argparse.Namespace, logger: MMLogger) -> dict: | |
config_name = Path(args.config) | |
if not config_name.exists(): | |
logger.error(f'Config file {config_name} does not exist') | |
cfg: Config = Config.fromfile(config_name) | |
cfg.work_dir = tempfile.TemporaryDirectory().name | |
cfg.log_level = 'WARN' | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
init_default_scope(cfg.get('scope', 'mmseg')) | |
if len(args.shape) == 1: | |
input_shape = (3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = (3, ) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
result = {} | |
model: BaseSegmentor = MODELS.build(cfg.model) | |
if hasattr(model, 'auxiliary_head'): | |
model.auxiliary_head = None | |
if torch.cuda.is_available(): | |
model.cuda() | |
model = revert_sync_batchnorm(model) | |
result['ori_shape'] = input_shape[-2:] | |
result['pad_shape'] = input_shape[-2:] | |
data_batch = { | |
'inputs': [torch.rand(input_shape)], | |
'data_samples': [SegDataSample(metainfo=result)] | |
} | |
data = model.data_preprocessor(data_batch) | |
model.eval() | |
if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']: | |
# TODO: Support MaskFormer and Mask2Former | |
raise NotImplementedError('MaskFormer and Mask2Former are not ' | |
'supported yet.') | |
outputs = get_model_complexity_info( | |
model, | |
input_shape, | |
inputs=data['inputs'], | |
show_table=False, | |
show_arch=False) | |
result['flops'] = _format_size(outputs['flops']) | |
result['params'] = _format_size(outputs['params']) | |
result['compute_type'] = 'direct: randomly generate a picture' | |
return result | |
def main(): | |
args = parse_args() | |
logger = MMLogger.get_instance(name='MMLogger') | |
result = inference(args, logger) | |
split_line = '=' * 30 | |
ori_shape = result['ori_shape'] | |
pad_shape = result['pad_shape'] | |
flops = result['flops'] | |
params = result['params'] | |
compute_type = result['compute_type'] | |
if pad_shape != ori_shape: | |
print(f'{split_line}\nUse size divisor set input shape ' | |
f'from {ori_shape} to {pad_shape}') | |
print(f'{split_line}\nCompute type: {compute_type}\n' | |
f'Input shape: {pad_shape}\nFlops: {flops}\n' | |
f'Params: {params}\n{split_line}') | |
print('!!!Please be cautious if you use the results in papers. ' | |
'You may need to check if all ops are supported and verify ' | |
'that the flops computation is correct.') | |
if __name__ == '__main__': | |
main() | |