TTP / mmseg /utils /mask_classification.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import torch
from mmcv.ops import point_sample
from mmengine.structures import InstanceData
from torch import Tensor
from mmseg.registry import TASK_UTILS
from mmseg.utils import ConfigType, SampleList
def seg_data_to_instance_data(ignore_index: int,
batch_data_samples: SampleList):
"""Convert the paradigm of ground truth from semantic segmentation to
instance segmentation.
Args:
ignore_index (int): The label index to be ignored.
batch_data_samples (List[SegDataSample]): The Data
Samples. It usually includes information such as
`gt_sem_seg`.
Returns:
tuple[Tensor]: A tuple contains two lists.
- batch_gt_instances (List[InstanceData]): Batch of
gt_instance. It usually includes ``labels``, each is
unique ground truth label id of images, with
shape (num_gt, ) and ``masks``, each is ground truth
masks of each instances of a image, shape (num_gt, h, w).
- batch_img_metas (List[Dict]): List of image meta information.
"""
batch_gt_instances = []
for data_sample in batch_data_samples:
gt_sem_seg = data_sample.gt_sem_seg.data
classes = torch.unique(
gt_sem_seg,
sorted=False,
return_inverse=False,
return_counts=False)
# remove ignored region
gt_labels = classes[classes != ignore_index]
masks = []
for class_id in gt_labels:
masks.append(gt_sem_seg == class_id)
if len(masks) == 0:
gt_masks = torch.zeros(
(0, gt_sem_seg.shape[-2],
gt_sem_seg.shape[-1])).to(gt_sem_seg).long()
else:
gt_masks = torch.stack(masks).squeeze(1).long()
instance_data = InstanceData(labels=gt_labels, masks=gt_masks)
batch_gt_instances.append(instance_data)
return batch_gt_instances
class MatchMasks:
"""Match the predictions to category labels.
Args:
num_points (int): the number of sampled points to compute cost.
num_queries (int): the number of prediction masks.
num_classes (int): the number of classes.
assigner (BaseAssigner): the assigner to compute matching.
"""
def __init__(self,
num_points: int,
num_queries: int,
num_classes: int,
assigner: ConfigType = None):
assert assigner is not None, "\'assigner\' in decode_head.train_cfg" \
'cannot be None'
assert num_points > 0, 'num_points should be a positive integer.'
self.num_points = num_points
self.num_queries = num_queries
self.num_classes = num_classes
self.assigner = TASK_UTILS.build(assigner)
def get_targets(self, cls_scores: List[Tensor], mask_preds: List[Tensor],
batch_gt_instances: List[InstanceData]) -> Tuple:
"""Compute best mask matches for all images for a decoder layer.
Args:
cls_scores (List[Tensor]): Mask score logits from a single
decoder layer for all images. Each with shape (num_queries,
cls_out_channels).
mask_preds (List[Tensor]): Mask logits from a single decoder
layer for all images. Each with shape (num_queries, h, w).
batch_gt_instances (List[InstanceData]): each contains
``labels`` and ``masks``.
Returns:
tuple: a tuple containing the following targets.
- labels (List[Tensor]): Labels of all images.\
Each with shape (num_queries, ).
- mask_targets (List[Tensor]): Mask targets of\
all images. Each with shape (num_queries, h, w).
- mask_weights (List[Tensor]): Mask weights of\
all images. Each with shape (num_queries, ).
- avg_factor (int): Average factor that is used to
average the loss. `avg_factor` is usually equal
to the number of positive priors.
"""
batch_size = cls_scores.shape[0]
results = dict({
'labels': [],
'mask_targets': [],
'mask_weights': [],
})
for i in range(batch_size):
labels, mask_targets, mask_weights\
= self._get_targets_single(cls_scores[i],
mask_preds[i],
batch_gt_instances[i])
results['labels'].append(labels)
results['mask_targets'].append(mask_targets)
results['mask_weights'].append(mask_weights)
# shape (batch_size, num_queries)
labels = torch.stack(results['labels'], dim=0)
# shape (batch_size, num_gts, h, w)
mask_targets = torch.cat(results['mask_targets'], dim=0)
# shape (batch_size, num_queries)
mask_weights = torch.stack(results['mask_weights'], dim=0)
avg_factor = sum(
[len(gt_instances.labels) for gt_instances in batch_gt_instances])
res = (labels, mask_targets, mask_weights, avg_factor)
return res
def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
gt_instances: InstanceData) \
-> Tuple[Tensor, Tensor, Tensor]:
"""Compute a set of best mask matches for one image.
Args:
cls_score (Tensor): Mask score logits from a single decoder layer
for one image. Shape (num_queries, cls_out_channels).
mask_pred (Tensor): Mask logits for a single decoder layer for one
image. Shape (num_queries, h, w).
gt_instances (:obj:`InstanceData`): It contains ``labels`` and
``masks``.
Returns:
tuple[Tensor]: A tuple containing the following for one image.
- labels (Tensor): Labels of each image. \
shape (num_queries, ).
- mask_targets (Tensor): Mask targets of each image. \
shape (num_queries, h, w).
- mask_weights (Tensor): Mask weights of each image. \
shape (num_queries, ).
"""
gt_labels = gt_instances.labels
gt_masks = gt_instances.masks
# when "gt_labels" is empty, classify all queries to background
if len(gt_labels) == 0:
labels = gt_labels.new_full((self.num_queries, ),
self.num_classes,
dtype=torch.long)
mask_targets = gt_labels
mask_weights = gt_labels.new_zeros((self.num_queries, ))
return labels, mask_targets, mask_weights
# sample points
num_queries = cls_score.shape[0]
num_gts = gt_labels.shape[0]
point_coords = torch.rand((1, self.num_points, 2),
device=cls_score.device)
# shape (num_queries, num_points)
mask_points_pred = point_sample(
mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1,
1)).squeeze(1)
# shape (num_gts, num_points)
gt_points_masks = point_sample(
gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1,
1)).squeeze(1)
sampled_gt_instances = InstanceData(
labels=gt_labels, masks=gt_points_masks)
sampled_pred_instances = InstanceData(
scores=cls_score, masks=mask_points_pred)
# assign and sample
matched_quiery_inds, matched_label_inds = self.assigner.assign(
pred_instances=sampled_pred_instances,
gt_instances=sampled_gt_instances)
labels = gt_labels.new_full((self.num_queries, ),
self.num_classes,
dtype=torch.long)
labels[matched_quiery_inds] = gt_labels[matched_label_inds]
mask_weights = gt_labels.new_zeros((self.num_queries, ))
mask_weights[matched_quiery_inds] = 1
mask_targets = gt_masks[matched_label_inds]
return labels, mask_targets, mask_weights