|
|
|
from typing import List, Tuple |
|
|
|
import torch |
|
from mmcv.ops import point_sample |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmseg.registry import TASK_UTILS |
|
from mmseg.utils import ConfigType, SampleList |
|
|
|
|
|
def seg_data_to_instance_data(ignore_index: int, |
|
batch_data_samples: SampleList): |
|
"""Convert the paradigm of ground truth from semantic segmentation to |
|
instance segmentation. |
|
|
|
Args: |
|
ignore_index (int): The label index to be ignored. |
|
batch_data_samples (List[SegDataSample]): The Data |
|
Samples. It usually includes information such as |
|
`gt_sem_seg`. |
|
|
|
Returns: |
|
tuple[Tensor]: A tuple contains two lists. |
|
- batch_gt_instances (List[InstanceData]): Batch of |
|
gt_instance. It usually includes ``labels``, each is |
|
unique ground truth label id of images, with |
|
shape (num_gt, ) and ``masks``, each is ground truth |
|
masks of each instances of a image, shape (num_gt, h, w). |
|
- batch_img_metas (List[Dict]): List of image meta information. |
|
""" |
|
batch_gt_instances = [] |
|
|
|
for data_sample in batch_data_samples: |
|
gt_sem_seg = data_sample.gt_sem_seg.data |
|
classes = torch.unique( |
|
gt_sem_seg, |
|
sorted=False, |
|
return_inverse=False, |
|
return_counts=False) |
|
|
|
|
|
gt_labels = classes[classes != ignore_index] |
|
|
|
masks = [] |
|
for class_id in gt_labels: |
|
masks.append(gt_sem_seg == class_id) |
|
|
|
if len(masks) == 0: |
|
gt_masks = torch.zeros( |
|
(0, gt_sem_seg.shape[-2], |
|
gt_sem_seg.shape[-1])).to(gt_sem_seg).long() |
|
else: |
|
gt_masks = torch.stack(masks).squeeze(1).long() |
|
|
|
instance_data = InstanceData(labels=gt_labels, masks=gt_masks) |
|
batch_gt_instances.append(instance_data) |
|
return batch_gt_instances |
|
|
|
|
|
class MatchMasks: |
|
"""Match the predictions to category labels. |
|
|
|
Args: |
|
num_points (int): the number of sampled points to compute cost. |
|
num_queries (int): the number of prediction masks. |
|
num_classes (int): the number of classes. |
|
assigner (BaseAssigner): the assigner to compute matching. |
|
""" |
|
|
|
def __init__(self, |
|
num_points: int, |
|
num_queries: int, |
|
num_classes: int, |
|
assigner: ConfigType = None): |
|
assert assigner is not None, "\'assigner\' in decode_head.train_cfg" \ |
|
'cannot be None' |
|
assert num_points > 0, 'num_points should be a positive integer.' |
|
self.num_points = num_points |
|
self.num_queries = num_queries |
|
self.num_classes = num_classes |
|
self.assigner = TASK_UTILS.build(assigner) |
|
|
|
def get_targets(self, cls_scores: List[Tensor], mask_preds: List[Tensor], |
|
batch_gt_instances: List[InstanceData]) -> Tuple: |
|
"""Compute best mask matches for all images for a decoder layer. |
|
|
|
Args: |
|
cls_scores (List[Tensor]): Mask score logits from a single |
|
decoder layer for all images. Each with shape (num_queries, |
|
cls_out_channels). |
|
mask_preds (List[Tensor]): Mask logits from a single decoder |
|
layer for all images. Each with shape (num_queries, h, w). |
|
batch_gt_instances (List[InstanceData]): each contains |
|
``labels`` and ``masks``. |
|
|
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
|
|
- labels (List[Tensor]): Labels of all images.\ |
|
Each with shape (num_queries, ). |
|
- mask_targets (List[Tensor]): Mask targets of\ |
|
all images. Each with shape (num_queries, h, w). |
|
- mask_weights (List[Tensor]): Mask weights of\ |
|
all images. Each with shape (num_queries, ). |
|
- avg_factor (int): Average factor that is used to |
|
average the loss. `avg_factor` is usually equal |
|
to the number of positive priors. |
|
""" |
|
batch_size = cls_scores.shape[0] |
|
results = dict({ |
|
'labels': [], |
|
'mask_targets': [], |
|
'mask_weights': [], |
|
}) |
|
for i in range(batch_size): |
|
labels, mask_targets, mask_weights\ |
|
= self._get_targets_single(cls_scores[i], |
|
mask_preds[i], |
|
batch_gt_instances[i]) |
|
results['labels'].append(labels) |
|
results['mask_targets'].append(mask_targets) |
|
results['mask_weights'].append(mask_weights) |
|
|
|
|
|
labels = torch.stack(results['labels'], dim=0) |
|
|
|
mask_targets = torch.cat(results['mask_targets'], dim=0) |
|
|
|
mask_weights = torch.stack(results['mask_weights'], dim=0) |
|
|
|
avg_factor = sum( |
|
[len(gt_instances.labels) for gt_instances in batch_gt_instances]) |
|
|
|
res = (labels, mask_targets, mask_weights, avg_factor) |
|
|
|
return res |
|
|
|
def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor, |
|
gt_instances: InstanceData) \ |
|
-> Tuple[Tensor, Tensor, Tensor]: |
|
"""Compute a set of best mask matches for one image. |
|
|
|
Args: |
|
cls_score (Tensor): Mask score logits from a single decoder layer |
|
for one image. Shape (num_queries, cls_out_channels). |
|
mask_pred (Tensor): Mask logits for a single decoder layer for one |
|
image. Shape (num_queries, h, w). |
|
gt_instances (:obj:`InstanceData`): It contains ``labels`` and |
|
``masks``. |
|
|
|
Returns: |
|
tuple[Tensor]: A tuple containing the following for one image. |
|
|
|
- labels (Tensor): Labels of each image. \ |
|
shape (num_queries, ). |
|
- mask_targets (Tensor): Mask targets of each image. \ |
|
shape (num_queries, h, w). |
|
- mask_weights (Tensor): Mask weights of each image. \ |
|
shape (num_queries, ). |
|
""" |
|
gt_labels = gt_instances.labels |
|
gt_masks = gt_instances.masks |
|
|
|
if len(gt_labels) == 0: |
|
labels = gt_labels.new_full((self.num_queries, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
mask_targets = gt_labels |
|
mask_weights = gt_labels.new_zeros((self.num_queries, )) |
|
return labels, mask_targets, mask_weights |
|
|
|
num_queries = cls_score.shape[0] |
|
num_gts = gt_labels.shape[0] |
|
|
|
point_coords = torch.rand((1, self.num_points, 2), |
|
device=cls_score.device) |
|
|
|
mask_points_pred = point_sample( |
|
mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1, |
|
1)).squeeze(1) |
|
|
|
gt_points_masks = point_sample( |
|
gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1, |
|
1)).squeeze(1) |
|
|
|
sampled_gt_instances = InstanceData( |
|
labels=gt_labels, masks=gt_points_masks) |
|
sampled_pred_instances = InstanceData( |
|
scores=cls_score, masks=mask_points_pred) |
|
|
|
matched_quiery_inds, matched_label_inds = self.assigner.assign( |
|
pred_instances=sampled_pred_instances, |
|
gt_instances=sampled_gt_instances) |
|
labels = gt_labels.new_full((self.num_queries, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[matched_quiery_inds] = gt_labels[matched_label_inds] |
|
|
|
mask_weights = gt_labels.new_zeros((self.num_queries, )) |
|
mask_weights[matched_quiery_inds] = 1 |
|
mask_targets = gt_masks[matched_label_inds] |
|
|
|
return labels, mask_targets, mask_weights |
|
|