Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, build_norm_layer | |
from mmseg.registry import MODELS | |
from ..utils import Upsample | |
from .decode_head import BaseDecodeHead | |
class SETRUPHead(BaseDecodeHead): | |
"""Naive upsampling head and Progressive upsampling head of SETR. | |
Naive or PUP head of `SETR <https://arxiv.org/pdf/2012.15840.pdf>`_. | |
Args: | |
norm_layer (dict): Config dict for input normalization. | |
Default: norm_layer=dict(type='LN', eps=1e-6, requires_grad=True). | |
num_convs (int): Number of decoder convolutions. Default: 1. | |
up_scale (int): The scale factor of interpolate. Default:4. | |
kernel_size (int): The kernel size of convolution when decoding | |
feature information from backbone. Default: 3. | |
init_cfg (dict | list[dict] | None): Initialization config dict. | |
Default: dict( | |
type='Constant', val=1.0, bias=0, layer='LayerNorm'). | |
""" | |
def __init__(self, | |
norm_layer=dict(type='LN', eps=1e-6, requires_grad=True), | |
num_convs=1, | |
up_scale=4, | |
kernel_size=3, | |
init_cfg=[ | |
dict(type='Constant', val=1.0, bias=0, layer='LayerNorm'), | |
dict( | |
type='Normal', | |
std=0.01, | |
override=dict(name='conv_seg')) | |
], | |
**kwargs): | |
assert kernel_size in [1, 3], 'kernel_size must be 1 or 3.' | |
super().__init__(init_cfg=init_cfg, **kwargs) | |
assert isinstance(self.in_channels, int) | |
_, self.norm = build_norm_layer(norm_layer, self.in_channels) | |
self.up_convs = nn.ModuleList() | |
in_channels = self.in_channels | |
out_channels = self.channels | |
for _ in range(num_convs): | |
self.up_convs.append( | |
nn.Sequential( | |
ConvModule( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=int(kernel_size - 1) // 2, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
Upsample( | |
scale_factor=up_scale, | |
mode='bilinear', | |
align_corners=self.align_corners))) | |
in_channels = out_channels | |
def forward(self, x): | |
x = self._transform_inputs(x) | |
n, c, h, w = x.shape | |
x = x.reshape(n, c, h * w).transpose(2, 1).contiguous() | |
x = self.norm(x) | |
x = x.transpose(1, 2).reshape(n, c, h, w).contiguous() | |
for up_conv in self.up_convs: | |
x = up_conv(x) | |
out = self.cls_seg(x) | |
return out | |