Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Originally from https://github.com/visual-attention-network/segnext | |
# Licensed under the Apache License, Version 2.0 (the "License") | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmengine.device import get_device | |
from mmseg.registry import MODELS | |
from ..utils import resize | |
from .decode_head import BaseDecodeHead | |
class Matrix_Decomposition_2D_Base(nn.Module): | |
"""Base class of 2D Matrix Decomposition. | |
Args: | |
MD_S (int): The number of spatial coefficient in | |
Matrix Decomposition, it may be used for calculation | |
of the number of latent dimension D in Matrix | |
Decomposition. Defaults: 1. | |
MD_R (int): The number of latent dimension R in | |
Matrix Decomposition. Defaults: 64. | |
train_steps (int): The number of iteration steps in | |
Multiplicative Update (MU) rule to solve Non-negative | |
Matrix Factorization (NMF) in training. Defaults: 6. | |
eval_steps (int): The number of iteration steps in | |
Multiplicative Update (MU) rule to solve Non-negative | |
Matrix Factorization (NMF) in evaluation. Defaults: 7. | |
inv_t (int): Inverted multiple number to make coefficient | |
smaller in softmax. Defaults: 100. | |
rand_init (bool): Whether to initialize randomly. | |
Defaults: True. | |
""" | |
def __init__(self, | |
MD_S=1, | |
MD_R=64, | |
train_steps=6, | |
eval_steps=7, | |
inv_t=100, | |
rand_init=True): | |
super().__init__() | |
self.S = MD_S | |
self.R = MD_R | |
self.train_steps = train_steps | |
self.eval_steps = eval_steps | |
self.inv_t = inv_t | |
self.rand_init = rand_init | |
def _build_bases(self, B, S, D, R, device=None): | |
raise NotImplementedError | |
def local_step(self, x, bases, coef): | |
raise NotImplementedError | |
def local_inference(self, x, bases): | |
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R) | |
coef = torch.bmm(x.transpose(1, 2), bases) | |
coef = F.softmax(self.inv_t * coef, dim=-1) | |
steps = self.train_steps if self.training else self.eval_steps | |
for _ in range(steps): | |
bases, coef = self.local_step(x, bases, coef) | |
return bases, coef | |
def compute_coef(self, x, bases, coef): | |
raise NotImplementedError | |
def forward(self, x, return_bases=False): | |
"""Forward Function.""" | |
B, C, H, W = x.shape | |
# (B, C, H, W) -> (B * S, D, N) | |
D = C // self.S | |
N = H * W | |
x = x.view(B * self.S, D, N) | |
if not self.rand_init and not hasattr(self, 'bases'): | |
bases = self._build_bases(1, self.S, D, self.R, device=x.device) | |
self.register_buffer('bases', bases) | |
# (S, D, R) -> (B * S, D, R) | |
if self.rand_init: | |
bases = self._build_bases(B, self.S, D, self.R, device=x.device) | |
else: | |
bases = self.bases.repeat(B, 1, 1) | |
bases, coef = self.local_inference(x, bases) | |
# (B * S, N, R) | |
coef = self.compute_coef(x, bases, coef) | |
# (B * S, D, R) @ (B * S, N, R)^T -> (B * S, D, N) | |
x = torch.bmm(bases, coef.transpose(1, 2)) | |
# (B * S, D, N) -> (B, C, H, W) | |
x = x.view(B, C, H, W) | |
return x | |
class NMF2D(Matrix_Decomposition_2D_Base): | |
"""Non-negative Matrix Factorization (NMF) module. | |
It is inherited from ``Matrix_Decomposition_2D_Base`` module. | |
""" | |
def __init__(self, args=dict()): | |
super().__init__(**args) | |
self.inv_t = 1 | |
def _build_bases(self, B, S, D, R, device=None): | |
"""Build bases in initialization.""" | |
if device is None: | |
device = get_device() | |
bases = torch.rand((B * S, D, R)).to(device) | |
bases = F.normalize(bases, dim=1) | |
return bases | |
def local_step(self, x, bases, coef): | |
"""Local step in iteration to renew bases and coefficient.""" | |
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R) | |
numerator = torch.bmm(x.transpose(1, 2), bases) | |
# (B * S, N, R) @ [(B * S, D, R)^T @ (B * S, D, R)] -> (B * S, N, R) | |
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases)) | |
# Multiplicative Update | |
coef = coef * numerator / (denominator + 1e-6) | |
# (B * S, D, N) @ (B * S, N, R) -> (B * S, D, R) | |
numerator = torch.bmm(x, coef) | |
# (B * S, D, R) @ [(B * S, N, R)^T @ (B * S, N, R)] -> (B * S, D, R) | |
denominator = bases.bmm(coef.transpose(1, 2).bmm(coef)) | |
# Multiplicative Update | |
bases = bases * numerator / (denominator + 1e-6) | |
return bases, coef | |
def compute_coef(self, x, bases, coef): | |
"""Compute coefficient.""" | |
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R) | |
numerator = torch.bmm(x.transpose(1, 2), bases) | |
# (B * S, N, R) @ (B * S, D, R)^T @ (B * S, D, R) -> (B * S, N, R) | |
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases)) | |
# multiplication update | |
coef = coef * numerator / (denominator + 1e-6) | |
return coef | |
class Hamburger(nn.Module): | |
"""Hamburger Module. It consists of one slice of "ham" (matrix | |
decomposition) and two slices of "bread" (linear transformation). | |
Args: | |
ham_channels (int): Input and output channels of feature. | |
ham_kwargs (dict): Config of matrix decomposition module. | |
norm_cfg (dict | None): Config of norm layers. | |
""" | |
def __init__(self, | |
ham_channels=512, | |
ham_kwargs=dict(), | |
norm_cfg=None, | |
**kwargs): | |
super().__init__() | |
self.ham_in = ConvModule( | |
ham_channels, ham_channels, 1, norm_cfg=None, act_cfg=None) | |
self.ham = NMF2D(ham_kwargs) | |
self.ham_out = ConvModule( | |
ham_channels, ham_channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
def forward(self, x): | |
enjoy = self.ham_in(x) | |
enjoy = F.relu(enjoy, inplace=True) | |
enjoy = self.ham(enjoy) | |
enjoy = self.ham_out(enjoy) | |
ham = F.relu(x + enjoy, inplace=True) | |
return ham | |
class LightHamHead(BaseDecodeHead): | |
"""SegNeXt decode head. | |
This decode head is the implementation of `SegNeXt: Rethinking | |
Convolutional Attention Design for Semantic | |
Segmentation <https://arxiv.org/abs/2209.08575>`_. | |
Inspiration from https://github.com/visual-attention-network/segnext. | |
Specifically, LightHamHead is inspired by HamNet from | |
`Is Attention Better Than Matrix Decomposition? | |
<https://arxiv.org/abs/2109.04553>`. | |
Args: | |
ham_channels (int): input channels for Hamburger. | |
Defaults: 512. | |
ham_kwargs (int): kwagrs for Ham. Defaults: dict(). | |
""" | |
def __init__(self, ham_channels=512, ham_kwargs=dict(), **kwargs): | |
super().__init__(input_transform='multiple_select', **kwargs) | |
self.ham_channels = ham_channels | |
self.squeeze = ConvModule( | |
sum(self.in_channels), | |
self.ham_channels, | |
1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.hamburger = Hamburger(ham_channels, ham_kwargs, **kwargs) | |
self.align = ConvModule( | |
self.ham_channels, | |
self.channels, | |
1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def forward(self, inputs): | |
"""Forward function.""" | |
inputs = self._transform_inputs(inputs) | |
inputs = [ | |
resize( | |
level, | |
size=inputs[0].shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) for level in inputs | |
] | |
inputs = torch.cat(inputs, dim=1) | |
# apply a conv block to squeeze feature map | |
x = self.squeeze(inputs) | |
# apply hamburger module | |
x = self.hamburger(x) | |
# apply a conv block to align feature map | |
output = self.align(x) | |
output = self.cls_seg(output) | |
return output | |