|
|
|
import torch |
|
|
|
from mmseg.registry import MODELS |
|
from .fcn_head import FCNHead |
|
|
|
try: |
|
from mmcv.ops import CrissCrossAttention |
|
except ModuleNotFoundError: |
|
CrissCrossAttention = None |
|
|
|
|
|
@MODELS.register_module() |
|
class CCHead(FCNHead): |
|
"""CCNet: Criss-Cross Attention for Semantic Segmentation. |
|
|
|
This head is the implementation of `CCNet |
|
<https://arxiv.org/abs/1811.11721>`_. |
|
|
|
Args: |
|
recurrence (int): Number of recurrence of Criss Cross Attention |
|
module. Default: 2. |
|
""" |
|
|
|
def __init__(self, recurrence=2, **kwargs): |
|
if CrissCrossAttention is None: |
|
raise RuntimeError('Please install mmcv-full for ' |
|
'CrissCrossAttention ops') |
|
super().__init__(num_convs=2, **kwargs) |
|
self.recurrence = recurrence |
|
self.cca = CrissCrossAttention(self.channels) |
|
|
|
def forward(self, inputs): |
|
"""Forward function.""" |
|
x = self._transform_inputs(inputs) |
|
output = self.convs[0](x) |
|
for _ in range(self.recurrence): |
|
output = self.cca(output) |
|
output = self.convs[1](output) |
|
if self.concat_input: |
|
output = self.conv_cat(torch.cat([x, output], dim=1)) |
|
output = self.cls_seg(output) |
|
return output |
|
|