Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from numbers import Number | |
| from typing import Any, Dict, List, Optional, Sequence | |
| import torch | |
| from mmengine.model import BaseDataPreprocessor | |
| from mmseg.registry import MODELS | |
| from mmseg.utils import stack_batch | |
| class SegDataPreProcessor(BaseDataPreprocessor): | |
| """Image pre-processor for segmentation tasks. | |
| Comparing with the :class:`mmengine.ImgDataPreprocessor`, | |
| 1. It won't do normalization if ``mean`` is not specified. | |
| 2. It does normalization and color space conversion after stacking batch. | |
| 3. It supports batch augmentations like mixup and cutmix. | |
| It provides the data pre-processing as follows | |
| - Collate and move data to the target device. | |
| - Pad inputs to the input size with defined ``pad_val``, and pad seg map | |
| with defined ``seg_pad_val``. | |
| - Stack inputs to batch_inputs. | |
| - Convert inputs from bgr to rgb if the shape of input is (3, H, W). | |
| - Normalize image with defined std and mean. | |
| - Do batch augmentations like Mixup and Cutmix during training. | |
| Args: | |
| mean (Sequence[Number], optional): The pixel mean of R, G, B channels. | |
| Defaults to None. | |
| std (Sequence[Number], optional): The pixel standard deviation of | |
| R, G, B channels. Defaults to None. | |
| size (tuple, optional): Fixed padding size. | |
| size_divisor (int, optional): The divisor of padded size. | |
| pad_val (float, optional): Padding value. Default: 0. | |
| seg_pad_val (float, optional): Padding value of segmentation map. | |
| Default: 255. | |
| padding_mode (str): Type of padding. Default: constant. | |
| - constant: pads with a constant value, this value is specified | |
| with pad_val. | |
| bgr_to_rgb (bool): whether to convert image from BGR to RGB. | |
| Defaults to False. | |
| rgb_to_bgr (bool): whether to convert image from RGB to RGB. | |
| Defaults to False. | |
| batch_augments (list[dict], optional): Batch-level augmentations | |
| test_cfg (dict, optional): The padding size config in testing, if not | |
| specify, will use `size` and `size_divisor` params as default. | |
| Defaults to None, only supports keys `size` or `size_divisor`. | |
| """ | |
| def __init__( | |
| self, | |
| mean: Sequence[Number] = None, | |
| std: Sequence[Number] = None, | |
| size: Optional[tuple] = None, | |
| size_divisor: Optional[int] = None, | |
| pad_val: Number = 0, | |
| seg_pad_val: Number = 255, | |
| bgr_to_rgb: bool = False, | |
| rgb_to_bgr: bool = False, | |
| batch_augments: Optional[List[dict]] = None, | |
| test_cfg: dict = None, | |
| ): | |
| super().__init__() | |
| self.size = size | |
| self.size_divisor = size_divisor | |
| self.pad_val = pad_val | |
| self.seg_pad_val = seg_pad_val | |
| assert not (bgr_to_rgb and rgb_to_bgr), ( | |
| '`bgr2rgb` and `rgb2bgr` cannot be set to True at the same time') | |
| self.channel_conversion = rgb_to_bgr or bgr_to_rgb | |
| if mean is not None: | |
| assert std is not None, 'To enable the normalization in ' \ | |
| 'preprocessing, please specify both ' \ | |
| '`mean` and `std`.' | |
| # Enable the normalization in preprocessing. | |
| self._enable_normalize = True | |
| self.register_buffer('mean', | |
| torch.tensor(mean).view(-1, 1, 1), False) | |
| self.register_buffer('std', | |
| torch.tensor(std).view(-1, 1, 1), False) | |
| else: | |
| self._enable_normalize = False | |
| # TODO: support batch augmentations. | |
| self.batch_augments = batch_augments | |
| # Support different padding methods in testing | |
| self.test_cfg = test_cfg | |
| def forward(self, data: dict, training: bool = False) -> Dict[str, Any]: | |
| """Perform normalization、padding and bgr2rgb conversion based on | |
| ``BaseDataPreprocessor``. | |
| Args: | |
| data (dict): data sampled from dataloader. | |
| training (bool): Whether to enable training time augmentation. | |
| Returns: | |
| Dict: Data in the same format as the model input. | |
| """ | |
| data = self.cast_data(data) # type: ignore | |
| inputs = data['inputs'] | |
| data_samples = data.get('data_samples', None) | |
| # TODO: whether normalize should be after stack_batch | |
| if self.channel_conversion and inputs[0].size(0) == 3: | |
| inputs = [_input[[2, 1, 0], ...] for _input in inputs] | |
| inputs = [_input.float() for _input in inputs] | |
| if self._enable_normalize: | |
| inputs = [(_input - self.mean) / self.std for _input in inputs] | |
| if training: | |
| assert data_samples is not None, ('During training, ', | |
| '`data_samples` must be define.') | |
| inputs, data_samples = stack_batch( | |
| inputs=inputs, | |
| data_samples=data_samples, | |
| size=self.size, | |
| size_divisor=self.size_divisor, | |
| pad_val=self.pad_val, | |
| seg_pad_val=self.seg_pad_val) | |
| if self.batch_augments is not None: | |
| inputs, data_samples = self.batch_augments( | |
| inputs, data_samples) | |
| else: | |
| img_size = inputs[0].shape[1:] | |
| assert all(input_.shape[1:] == img_size for input_ in inputs), \ | |
| 'The image size in a batch should be the same.' | |
| # pad images when testing | |
| if self.test_cfg: | |
| inputs, padded_samples = stack_batch( | |
| inputs=inputs, | |
| size=self.test_cfg.get('size', None), | |
| size_divisor=self.test_cfg.get('size_divisor', None), | |
| pad_val=self.pad_val, | |
| seg_pad_val=self.seg_pad_val) | |
| for data_sample, pad_info in zip(data_samples, padded_samples): | |
| data_sample.set_metainfo({**pad_info}) | |
| else: | |
| inputs = torch.stack(inputs, dim=0) | |
| return dict(inputs=inputs, data_samples=data_samples) | |