Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Union | |
import torch | |
import torch.nn as nn | |
from transformers import PreTrainedModel | |
DEFAULT_IMAGE_TOKEN = '<image>' | |
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>' | |
DEFAULT_IM_START_TOKEN = '<im_start>' | |
DEFAULT_IM_END_TOKEN = '<im_end>' | |
class LlavaLlamaForCausalLM(PreTrainedModel): | |
def __init__(self, | |
vision_encoder, | |
lang_encoder, | |
mm_hidden_size, | |
use_im_start_end=True, | |
use_mm_proj=True, | |
im_start_token: Optional[int] = None, | |
im_end_token: Optional[int] = None, | |
im_patch_token: Optional[int] = None, | |
mm_vision_select_layer: int = -1): | |
super().__init__(lang_encoder.config) | |
self.vision_tower = vision_encoder | |
self.lang_encoder = lang_encoder | |
self.use_im_start_end = use_im_start_end | |
self.im_start_token = im_start_token | |
self.im_end_token = im_end_token | |
self.im_patch_token = im_patch_token | |
self.mm_hidden_size = mm_hidden_size | |
self.mm_vision_select_layer = mm_vision_select_layer | |
self.lang_hidden_size = lang_encoder.config.hidden_size | |
if use_mm_proj and not hasattr(lang_encoder.model, 'mm_projector'): | |
mm_projector = nn.Linear(self.mm_hidden_size, | |
self.lang_hidden_size) | |
self.lang_encoder.model.add_module('mm_projector', mm_projector) | |
elif not use_mm_proj: | |
self.lang_encoder.model.add_module('mm_projector', nn.Identity()) | |
self.post_init() | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
): | |
output_attentions = ( | |
output_attentions if output_attentions is not None else | |
self.config.output_attentions) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else | |
self.config.output_hidden_states) | |
return_dict = ( | |
return_dict | |
if return_dict is not None else self.config.use_return_dict) | |
# decoder outputs consists of | |
# (dec_features, layer_state, dec_hidden, dec_attn) | |
if inputs_embeds is None: | |
inputs_embeds = self.lang_encoder.model.embed_tokens(input_ids) | |
inputs_embeds = self.forward_vision_tower(input_ids, inputs_embeds, | |
images) | |
return self.lang_encoder( | |
input_ids=None, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
) | |
def prepare_inputs_for_generation(self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
**kwargs): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
# if `inputs_embeds` are passed, we only want to use | |
# them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {'inputs_embeds': inputs_embeds} | |
else: | |
model_inputs = {'input_ids': input_ids} | |
model_inputs.update({ | |
'past_key_values': past_key_values, | |
'use_cache': kwargs.get('use_cache'), | |
'attention_mask': attention_mask, | |
'images': kwargs.get('images', None), | |
}) | |
return model_inputs | |
def forward_vision_tower( | |
self, | |
input_ids: torch.LongTensor, | |
inputs_embeds: torch.FloatTensor, | |
images: Union[torch.FloatTensor, list, None] = None, | |
): | |
if self.use_im_start_end: | |
assert self.im_start_token is not None | |
assert self.im_end_token is not None | |
if images is not None: | |
assert self.im_patch_token is not None | |
if self.vision_tower is None or images is None or ( | |
input_ids.shape[1] == 1 and not self.training): | |
return inputs_embeds | |
with torch.no_grad(): | |
if isinstance(images, (list, tuple)): | |
# variable length images | |
image_features = [] | |
for image in images: | |
feats = self.vision_tower(image.unsqueeze(0)) | |
image_feature = feats[self.mm_vision_select_layer][:, 1:] | |
image_features.append(image_feature) | |
else: | |
feats = self.vision_tower(images) | |
image_features = feats[self.mm_vision_select_layer][:, 1:] | |
mm_projector = self.lang_encoder.model.mm_projector | |
if isinstance(images, (list, tuple)): | |
image_features = [ | |
mm_projector(image_feature)[0] | |
for image_feature in image_features | |
] | |
else: | |
image_features = mm_projector(image_features) | |
dummy_image_features = torch.zeros( | |
256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) | |
dummy_image_features = mm_projector(dummy_image_features) | |
new_input_embeds = [] | |
cur_image_idx = 0 | |
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): | |
if (cur_input_ids != self.im_patch_token).all(): | |
# multimodal LLM, but the current sample is not multimodal | |
cur_input_embeds = cur_input_embeds + ( | |
0. * dummy_image_features).sum() | |
new_input_embeds.append(cur_input_embeds) | |
cur_image_idx += 1 | |
continue | |
if self.use_im_start_end: | |
cur_image_features = image_features[cur_image_idx] | |
num_patches = cur_image_features.shape[0] | |
if (cur_input_ids == self.im_start_token).sum() != ( | |
cur_input_ids == self.im_end_token).sum(): | |
raise ValueError('The number of image start tokens and ' | |
'image end tokens should be the same.') | |
image_start_tokens = torch.where( | |
cur_input_ids == self.im_start_token)[0] | |
for image_start_token_pos in image_start_tokens: | |
cur_image_features = image_features[cur_image_idx].to( | |
device=cur_input_embeds.device) | |
num_patches = cur_image_features.shape[0] | |
if cur_input_ids[image_start_token_pos + num_patches + | |
1] != self.im_end_token: | |
raise ValueError('The image end token should follow ' | |
'the image start token.') | |
cur_new_input_embeds = torch.cat( | |
(cur_input_embeds[:image_start_token_pos + 1], | |
cur_image_features, | |
cur_input_embeds[image_start_token_pos + num_patches + | |
1:]), | |
dim=0) | |
cur_image_idx += 1 | |
new_input_embeds.append(cur_new_input_embeds) | |
else: | |
cur_image_features = image_features[cur_image_idx] | |
num_patches = cur_image_features.shape[0] | |
if (cur_input_ids == self.im_patch_token).sum() != num_patches: | |
print(f'Debug: num_patches: {num_patches}') | |
raise ValueError( | |
'The number of image patch tokens should ' | |
'be the same as the number of image patches.') | |
masked_indices = torch.where( | |
cur_input_ids == self.im_patch_token)[0] | |
mask_index_start = masked_indices[0] | |
if (masked_indices != torch.arange( | |
mask_index_start, | |
mask_index_start + num_patches, | |
device=masked_indices.device, | |
dtype=masked_indices.dtype)).any(): | |
raise ValueError( | |
'The image patch tokens should be consecutive.') | |
cur_new_input_embeds = torch.cat( | |
(cur_input_embeds[:mask_index_start], cur_image_features, | |
cur_input_embeds[mask_index_start + num_patches:]), | |
dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
cur_image_idx += 1 | |
inputs_embeds = torch.stack(new_input_embeds, dim=0) | |
return inputs_embeds | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += (tuple( | |
past_state.index_select(0, beam_idx) | |
for past_state in layer_past), ) | |
return reordered_past | |