Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List | |
from mmengine import get_file_backend, list_from_file | |
from mmpretrain.registry import DATASETS | |
from .base_dataset import BaseDataset | |
from .categories import CALTECH101_CATEGORIES | |
class Caltech101(BaseDataset): | |
"""The Caltech101 Dataset. | |
Support the `Caltech101 <https://data.caltech.edu/records/mzrjq-6wc02>`_ Dataset. | |
After downloading and decompression, the dataset directory structure is as follows. | |
Caltech101 dataset directory: :: | |
caltech-101 | |
βββ 101_ObjectCategories | |
β βββ class_x | |
β β βββ xx1.jpg | |
β β βββ xx2.jpg | |
β β βββ ... | |
β βββ class_y | |
β β βββ yy1.jpg | |
β β βββ yy2.jpg | |
β β βββ ... | |
β βββ ... | |
βββ Annotations | |
β βββ class_x | |
β β βββ xx1.mat | |
β β βββ ... | |
β βββ ... | |
βββ meta | |
β βββ train.txt | |
β βββ test.txt | |
βββ .... | |
Please note that since there is no official splitting for training and | |
test set, you can use the train.txt and text.txt provided by us or | |
create your own annotation files. Here is the download | |
`link <https://download.openmmlab.com/mmpretrain/datasets/caltech_meta.zip>`_ | |
for the annotations. | |
Args: | |
data_root (str): The root directory for the Caltech101 dataset. | |
split (str, optional): The dataset split, supports "train" and "test". | |
Default to "train". | |
Examples: | |
>>> from mmpretrain.datasets import Caltech101 | |
>>> train_dataset = Caltech101(data_root='data/caltech-101', split='train') | |
>>> train_dataset | |
Dataset Caltech101 | |
Number of samples: 3060 | |
Number of categories: 102 | |
Root of dataset: data/caltech-101 | |
>>> test_dataset = Caltech101(data_root='data/caltech-101', split='test') | |
>>> test_dataset | |
Dataset Caltech101 | |
Number of samples: 6728 | |
Number of categories: 102 | |
Root of dataset: data/caltech-101 | |
""" # noqa: E501 | |
METAINFO = {'classes': CALTECH101_CATEGORIES} | |
def __init__(self, data_root: str, split: str = 'train', **kwargs): | |
splits = ['train', 'test'] | |
assert split in splits, \ | |
f"The split must be one of {splits}, but get '{split}'" | |
self.split = split | |
self.backend = get_file_backend(data_root, enable_singleton=True) | |
if split == 'train': | |
ann_file = self.backend.join_path('meta', 'train.txt') | |
else: | |
ann_file = self.backend.join_path('meta', 'test.txt') | |
data_prefix = '101_ObjectCategories' | |
test_mode = split == 'test' | |
super(Caltech101, self).__init__( | |
ann_file=ann_file, | |
data_root=data_root, | |
data_prefix=data_prefix, | |
test_mode=test_mode, | |
**kwargs) | |
def load_data_list(self): | |
"""Load images and ground truth labels.""" | |
pairs = list_from_file(self.ann_file) | |
data_list = [] | |
for pair in pairs: | |
path, gt_label = pair.split() | |
img_path = self.backend.join_path(self.img_prefix, path) | |
info = dict(img_path=img_path, gt_label=int(gt_label)) | |
data_list.append(info) | |
return data_list | |
def extra_repr(self) -> List[str]: | |
"""The extra repr information of the dataset.""" | |
body = [ | |
f'Root of dataset: \t{self.data_root}', | |
] | |
return body | |