Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Sequence, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from mmengine.utils import is_str | |
if hasattr(torch, 'tensor_split'): | |
tensor_split = torch.tensor_split | |
else: | |
# A simple implementation of `tensor_split`. | |
def tensor_split(input: torch.Tensor, indices: list): | |
outs = [] | |
for start, end in zip([0] + indices, indices + [input.size(0)]): | |
outs.append(input[start:end]) | |
return outs | |
LABEL_TYPE = Union[torch.Tensor, np.ndarray, Sequence, int] | |
SCORE_TYPE = Union[torch.Tensor, np.ndarray, Sequence] | |
def format_label(value: LABEL_TYPE) -> torch.Tensor: | |
"""Convert various python types to label-format tensor. | |
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |
:class:`Sequence`, :class:`int`. | |
Args: | |
value (torch.Tensor | numpy.ndarray | Sequence | int): Label value. | |
Returns: | |
:obj:`torch.Tensor`: The foramtted label tensor. | |
""" | |
# Handle single number | |
if isinstance(value, (torch.Tensor, np.ndarray)) and value.ndim == 0: | |
value = int(value.item()) | |
if isinstance(value, np.ndarray): | |
value = torch.from_numpy(value).to(torch.long) | |
elif isinstance(value, Sequence) and not is_str(value): | |
value = torch.tensor(value).to(torch.long) | |
elif isinstance(value, int): | |
value = torch.LongTensor([value]) | |
elif not isinstance(value, torch.Tensor): | |
raise TypeError(f'Type {type(value)} is not an available label type.') | |
assert value.ndim == 1, \ | |
f'The dims of value should be 1, but got {value.ndim}.' | |
return value | |
def format_score(value: SCORE_TYPE) -> torch.Tensor: | |
"""Convert various python types to score-format tensor. | |
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, | |
:class:`Sequence`. | |
Args: | |
value (torch.Tensor | numpy.ndarray | Sequence): Score values. | |
Returns: | |
:obj:`torch.Tensor`: The foramtted score tensor. | |
""" | |
if isinstance(value, np.ndarray): | |
value = torch.from_numpy(value).float() | |
elif isinstance(value, Sequence) and not is_str(value): | |
value = torch.tensor(value).float() | |
elif not isinstance(value, torch.Tensor): | |
raise TypeError(f'Type {type(value)} is not an available label type.') | |
assert value.ndim == 1, \ | |
f'The dims of value should be 1, but got {value.ndim}.' | |
return value | |
def cat_batch_labels(elements: List[torch.Tensor]): | |
"""Concat a batch of label tensor to one tensor. | |
Args: | |
elements (List[tensor]): A batch of labels. | |
Returns: | |
Tuple[torch.Tensor, List[int]]: The first item is the concated label | |
tensor, and the second item is the split indices of every sample. | |
""" | |
labels = [] | |
splits = [0] | |
for element in elements: | |
labels.append(element) | |
splits.append(splits[-1] + element.size(0)) | |
batch_label = torch.cat(labels) | |
return batch_label, splits[1:-1] | |
def batch_label_to_onehot(batch_label, split_indices, num_classes): | |
"""Convert a concated label tensor to onehot format. | |
Args: | |
batch_label (torch.Tensor): A concated label tensor from multiple | |
samples. | |
split_indices (List[int]): The split indices of every sample. | |
num_classes (int): The number of classes. | |
Returns: | |
torch.Tensor: The onehot format label tensor. | |
Examples: | |
>>> import torch | |
>>> from mmpretrain.structures import batch_label_to_onehot | |
>>> # Assume a concated label from 3 samples. | |
>>> # label 1: [0, 1], label 2: [0, 2, 4], label 3: [3, 1] | |
>>> batch_label = torch.tensor([0, 1, 0, 2, 4, 3, 1]) | |
>>> split_indices = [2, 5] | |
>>> batch_label_to_onehot(batch_label, split_indices, num_classes=5) | |
tensor([[1, 1, 0, 0, 0], | |
[1, 0, 1, 0, 1], | |
[0, 1, 0, 1, 0]]) | |
""" | |
sparse_onehot_list = F.one_hot(batch_label, num_classes) | |
onehot_list = [ | |
sparse_onehot.sum(0) | |
for sparse_onehot in tensor_split(sparse_onehot_list, split_indices) | |
] | |
return torch.stack(onehot_list) | |
def label_to_onehot(label: LABEL_TYPE, num_classes: int): | |
"""Convert a label to onehot format tensor. | |
Args: | |
label (LABEL_TYPE): Label value. | |
num_classes (int): The number of classes. | |
Returns: | |
torch.Tensor: The onehot format label tensor. | |
Examples: | |
>>> import torch | |
>>> from mmpretrain.structures import label_to_onehot | |
>>> # Single-label | |
>>> label_to_onehot(1, num_classes=5) | |
tensor([0, 1, 0, 0, 0]) | |
>>> # Multi-label | |
>>> label_to_onehot([0, 2, 3], num_classes=5) | |
tensor([1, 0, 1, 1, 0]) | |
""" | |
label = format_label(label) | |
sparse_onehot = F.one_hot(label, num_classes) | |
return sparse_onehot.sum(0) | |