TTP / mmpretrain /structures /data_sample.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
6.01 kB
# Copyright (c) OpenMMLab. All rights reserved.
from multiprocessing.reduction import ForkingPickler
from typing import Union
import numpy as np
import torch
from mmengine.structures import BaseDataElement
from .utils import LABEL_TYPE, SCORE_TYPE, format_label, format_score
class DataSample(BaseDataElement):
"""A general data structure interface.
It's used as the interface between different components.
The following fields are convention names in MMPretrain, and we will set or
get these fields in data transforms, models, and metrics if needed. You can
also set any new fields for your need.
Meta fields:
img_shape (Tuple): The shape of the corresponding input image.
ori_shape (Tuple): The original shape of the corresponding image.
sample_idx (int): The index of the sample in the dataset.
num_classes (int): The number of all categories.
Data fields:
gt_label (tensor): The ground truth label.
gt_score (tensor): The ground truth score.
pred_label (tensor): The predicted label.
pred_score (tensor): The predicted score.
mask (tensor): The mask used in masked image modeling.
Examples:
>>> import torch
>>> from mmpretrain.structures import DataSample
>>>
>>> img_meta = dict(img_shape=(960, 720), num_classes=5)
>>> data_sample = DataSample(metainfo=img_meta)
>>> data_sample.set_gt_label(3)
>>> print(data_sample)
<DataSample(
META INFORMATION
num_classes: 5
img_shape: (960, 720)
DATA FIELDS
gt_label: tensor([3])
) at 0x7ff64c1c1d30>
>>>
>>> # For multi-label data
>>> data_sample = DataSample().set_gt_label([0, 1, 4])
>>> print(data_sample)
<DataSample(
DATA FIELDS
gt_label: tensor([0, 1, 4])
) at 0x7ff5b490e100>
>>>
>>> # Set one-hot format score
>>> data_sample = DataSample().set_pred_score([0.1, 0.1, 0.6, 0.1])
>>> print(data_sample)
<DataSample(
META INFORMATION
num_classes: 4
DATA FIELDS
pred_score: tensor([0.1000, 0.1000, 0.6000, 0.1000])
) at 0x7ff5b48ef6a0>
>>>
>>> # Set custom field
>>> data_sample = DataSample()
>>> data_sample.my_field = [1, 2, 3]
>>> print(data_sample)
<DataSample(
DATA FIELDS
my_field: [1, 2, 3]
) at 0x7f8e9603d3a0>
>>> print(data_sample.my_field)
[1, 2, 3]
"""
def set_gt_label(self, value: LABEL_TYPE) -> 'DataSample':
"""Set ``gt_label``."""
self.set_field(format_label(value), 'gt_label', dtype=torch.Tensor)
return self
def set_gt_score(self, value: SCORE_TYPE) -> 'DataSample':
"""Set ``gt_score``."""
score = format_score(value)
self.set_field(score, 'gt_score', dtype=torch.Tensor)
if hasattr(self, 'num_classes'):
assert len(score) == self.num_classes, \
f'The length of score {len(score)} should be '\
f'equal to the num_classes {self.num_classes}.'
else:
self.set_field(
name='num_classes', value=len(score), field_type='metainfo')
return self
def set_pred_label(self, value: LABEL_TYPE) -> 'DataSample':
"""Set ``pred_label``."""
self.set_field(format_label(value), 'pred_label', dtype=torch.Tensor)
return self
def set_pred_score(self, value: SCORE_TYPE):
"""Set ``pred_label``."""
score = format_score(value)
self.set_field(score, 'pred_score', dtype=torch.Tensor)
if hasattr(self, 'num_classes'):
assert len(score) == self.num_classes, \
f'The length of score {len(score)} should be '\
f'equal to the num_classes {self.num_classes}.'
else:
self.set_field(
name='num_classes', value=len(score), field_type='metainfo')
return self
def set_mask(self, value: Union[torch.Tensor, np.ndarray]):
if isinstance(value, np.ndarray):
value = torch.from_numpy(value)
elif not isinstance(value, torch.Tensor):
raise TypeError(f'Invalid mask type {type(value)}')
self.set_field(value, 'mask', dtype=torch.Tensor)
return self
def __repr__(self) -> str:
"""Represent the object."""
def dump_items(items, prefix=''):
return '\n'.join(f'{prefix}{k}: {v}' for k, v in items)
repr_ = ''
if len(self._metainfo_fields) > 0:
repr_ += '\n\nMETA INFORMATION\n'
repr_ += dump_items(self.metainfo_items(), prefix=' ' * 4)
if len(self._data_fields) > 0:
repr_ += '\n\nDATA FIELDS\n'
repr_ += dump_items(self.items(), prefix=' ' * 4)
repr_ = f'<{self.__class__.__name__}({repr_}\n\n) at {hex(id(self))}>'
return repr_
def _reduce_datasample(data_sample):
"""reduce DataSample."""
attr_dict = data_sample.__dict__
convert_keys = []
for k, v in attr_dict.items():
if isinstance(v, torch.Tensor):
attr_dict[k] = v.numpy()
convert_keys.append(k)
return _rebuild_datasample, (attr_dict, convert_keys)
def _rebuild_datasample(attr_dict, convert_keys):
"""rebuild DataSample."""
data_sample = DataSample()
for k in convert_keys:
attr_dict[k] = torch.from_numpy(attr_dict[k])
data_sample.__dict__ = attr_dict
return data_sample
# Due to the multi-processing strategy of PyTorch, DataSample may consume many
# file descriptors because it contains multiple tensors. Here we overwrite the
# reduce function of DataSample in ForkingPickler and convert these tensors to
# np.ndarray during pickling. It may slightly influence the performance of
# dataloader.
ForkingPickler.register(DataSample, _reduce_datasample)