TTP / tools /analysis_tools /visualization_cam.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
4.11 kB
# Copyright (c) OpenMMLab. All rights reserved.
"""Use the pytorch-grad-cam tool to visualize Class Activation Maps (CAM).
requirement: pip install grad-cam
"""
from argparse import ArgumentParser
import numpy as np
import torch
import torch.nn.functional as F
from mmengine import Config
from mmengine.model import revert_sync_batchnorm
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import preprocess_image, show_cam_on_image
from mmseg.apis import inference_model, init_model, show_result_pyplot
from mmseg.utils import register_all_modules
class SemanticSegmentationTarget:
"""wrap the model.
requirement: pip install grad-cam
Args:
category (int): Visualization class.
mask (ndarray): Mask of class.
size (tuple): Image size.
"""
def __init__(self, category, mask, size):
self.category = category
self.mask = torch.from_numpy(mask)
self.size = size
if torch.cuda.is_available():
self.mask = self.mask.cuda()
def __call__(self, model_output):
model_output = torch.unsqueeze(model_output, dim=0)
model_output = F.interpolate(
model_output, size=self.size, mode='bilinear')
model_output = torch.squeeze(model_output, dim=0)
return (model_output[self.category, :, :] * self.mask).sum()
def main():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-file',
default='prediction.png',
help='Path to output prediction file')
parser.add_argument(
'--cam-file', default='vis_cam.png', help='Path to output cam file')
parser.add_argument(
'--target-layers',
default='backbone.layer4[2]',
help='Target layers to visualize CAM')
parser.add_argument(
'--category-index', default='7', help='Category to visualize CAM')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
register_all_modules()
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
# test a single image
result = inference_model(model, args.img)
# show the results
show_result_pyplot(
model,
args.img,
result,
draw_gt=False,
show=False if args.out_file is not None else True,
out_file=args.out_file)
# result data conversion
prediction_data = result.pred_sem_seg.data
pre_np_data = prediction_data.cpu().numpy().squeeze(0)
target_layers = args.target_layers
target_layers = [eval(f'model.{target_layers}')]
category = int(args.category_index)
mask_float = np.float32(pre_np_data == category)
# data processing
image = np.array(Image.open(args.img).convert('RGB'))
height, width = image.shape[0], image.shape[1]
rgb_img = np.float32(image) / 255
config = Config.fromfile(args.config)
image_mean = config.data_preprocessor['mean']
image_std = config.data_preprocessor['std']
input_tensor = preprocess_image(
rgb_img,
mean=[x / 255 for x in image_mean],
std=[x / 255 for x in image_std])
# Grad CAM(Class Activation Maps)
# Can also be LayerCAM, XGradCAM, GradCAMPlusPlus, EigenCAM, EigenGradCAM
targets = [
SemanticSegmentationTarget(category, mask_float, (height, width))
]
with GradCAM(
model=model,
target_layers=target_layers,
use_cuda=torch.cuda.is_available()) as cam:
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
# save cam file
Image.fromarray(cam_image).save(args.cam_file)
if __name__ == '__main__':
main()