Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch.nn as nn | |
| from mmpretrain.registry import MODELS | |
| from .base_backbone import BaseBackbone | |
| class LeNet5(BaseBackbone): | |
| """`LeNet5 <https://en.wikipedia.org/wiki/LeNet>`_ backbone. | |
| The input for LeNet-5 is a 32×32 grayscale image. | |
| Args: | |
| num_classes (int): number of classes for classification. | |
| The default value is -1, which uses the backbone as | |
| a feature extractor without the top classifier. | |
| """ | |
| def __init__(self, num_classes=-1): | |
| super(LeNet5, self).__init__() | |
| self.num_classes = num_classes | |
| self.features = nn.Sequential( | |
| nn.Conv2d(1, 6, kernel_size=5, stride=1), nn.Tanh(), | |
| nn.AvgPool2d(kernel_size=2), | |
| nn.Conv2d(6, 16, kernel_size=5, stride=1), nn.Tanh(), | |
| nn.AvgPool2d(kernel_size=2), | |
| nn.Conv2d(16, 120, kernel_size=5, stride=1), nn.Tanh()) | |
| if self.num_classes > 0: | |
| self.classifier = nn.Sequential( | |
| nn.Linear(120, 84), | |
| nn.Tanh(), | |
| nn.Linear(84, num_classes), | |
| ) | |
| def forward(self, x): | |
| x = self.features(x) | |
| if self.num_classes > 0: | |
| x = self.classifier(x.squeeze()) | |
| return (x, ) | |