Spaces:
Runtime error
Runtime error
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False) | |
sub_model_train = [ | |
'panoptic_head', | |
'sam_neck', | |
'data_preprocessor' | |
] | |
sub_model_optim = { | |
'sam_neck': {'lr_mult': 1}, | |
'panoptic_head': {'lr_mult': 1}, | |
} | |
max_epochs = 500 | |
optimizer = dict( | |
type='AdamW', | |
sub_model=sub_model_optim, | |
lr=0.0001, | |
weight_decay=1e-3 | |
) | |
param_scheduler = [ | |
# warm up learning rate scheduler | |
dict( | |
type='LinearLR', | |
start_factor=1e-4, | |
by_epoch=True, | |
begin=0, | |
end=1, | |
# update by iter | |
convert_to_iter_based=True), | |
# main learning rate scheduler | |
dict( | |
type='CosineAnnealingLR', | |
T_max=max_epochs, | |
by_epoch=True, | |
begin=1, | |
end=max_epochs, | |
), | |
] | |
param_scheduler_callback = dict( | |
type='ParamSchedulerHook' | |
) | |
evaluator_ = dict( | |
type='CocoPLMetric', | |
metric=['bbox', 'segm'], | |
proposal_nums=[1, 10, 100] | |
) | |
evaluator = dict( | |
val_evaluator=evaluator_, | |
) | |
image_size = (1024, 1024) | |
data_preprocessor = dict( | |
type='mmdet.DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32, | |
pad_mask=True, | |
mask_pad_value=0, | |
) | |
num_things_classes = 10 | |
num_stuff_classes = 0 | |
num_classes = num_things_classes + num_stuff_classes | |
num_queries = 90 | |
model_cfg = dict( | |
type='SegSAMPLer', | |
hyperparameters=dict( | |
optimizer=optimizer, | |
param_scheduler=param_scheduler, | |
evaluator=evaluator, | |
), | |
need_train_names=sub_model_train, | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
type='vit_h', | |
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth', | |
# type='vit_b', | |
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth', | |
), | |
sam_neck=dict( | |
type='SAMAggregatorNeck', | |
in_channels=[1280] * 32, | |
# in_channels=[768] * 12, | |
inner_channels=32, | |
selected_channels=range(8, 32, 3), | |
# selected_channels=range(4, 12, 2), | |
out_channels=256, | |
up_sample_scale=4, | |
), | |
panoptic_head=dict( | |
type='mmdet.Mask2FormerHead', | |
in_channels=[256, 256, 256], # pass to pixel_decoder inside | |
strides=[8, 16, 32], | |
feat_channels=256, | |
out_channels=256, | |
num_things_classes=num_things_classes, | |
num_stuff_classes=num_stuff_classes, | |
num_queries=num_queries, | |
num_transformer_feat_level=3, | |
pixel_decoder=dict( | |
type='mmdet.MSDeformAttnPixelDecoder', | |
num_outs=3, | |
norm_cfg=dict(type='GN', num_groups=32), | |
act_cfg=dict(type='ReLU'), | |
encoder=dict( # DeformableDetrTransformerEncoder | |
# num_layers=6, | |
num_layers=2, | |
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer | |
self_attn_cfg=dict( # MultiScaleDeformableAttention | |
embed_dims=256, | |
num_heads=8, | |
num_levels=3, | |
num_points=4, | |
dropout=0.1, | |
batch_first=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=1024, | |
num_fcs=2, | |
ffn_drop=0.1, | |
act_cfg=dict(type='ReLU', inplace=True)))), | |
positional_encoding=dict(num_feats=128, normalize=True)), | |
enforce_decoder_input_project=False, | |
positional_encoding=dict(num_feats=128, normalize=True), | |
transformer_decoder=dict( # Mask2FormerTransformerDecoder | |
return_intermediate=True, | |
# num_layers=9, | |
num_layers=3, | |
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer | |
self_attn_cfg=dict( # MultiheadAttention | |
embed_dims=256, | |
num_heads=8, | |
dropout=0.1, | |
batch_first=True), | |
cross_attn_cfg=dict( # MultiheadAttention | |
embed_dims=256, | |
num_heads=8, | |
dropout=0.1, | |
batch_first=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=2048, | |
num_fcs=2, | |
ffn_drop=0.1, | |
act_cfg=dict(type='ReLU', inplace=True))), | |
init_cfg=None), | |
loss_cls=dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=False, | |
loss_weight=2.0, | |
reduction='mean', | |
class_weight=[1.0] * num_classes + [0.1]), | |
loss_mask=dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='mean', | |
loss_weight=5.0), | |
loss_dice=dict( | |
type='mmdet.DiceLoss', | |
use_sigmoid=True, | |
activate=True, | |
reduction='mean', | |
naive_dice=True, | |
eps=1.0, | |
loss_weight=5.0)), | |
panoptic_fusion_head=dict( | |
type='mmdet.MaskFormerFusionHead', | |
num_things_classes=num_things_classes, | |
num_stuff_classes=num_stuff_classes, | |
loss_panoptic=None, | |
init_cfg=None), | |
train_cfg=dict( | |
num_points=12544, | |
oversample_ratio=3.0, | |
importance_sample_ratio=0.75, | |
assigner=dict( | |
type='mmdet.HungarianAssigner', | |
match_costs=[ | |
dict(type='mmdet.ClassificationCost', weight=2.0), | |
dict( | |
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True), | |
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0) | |
]), | |
sampler=dict(type='mmdet.MaskPseudoSampler')), | |
test_cfg=dict( | |
panoptic_on=False, | |
# For now, the dataset does not support | |
# evaluating semantic segmentation metric. | |
semantic_on=False, | |
instance_on=True, | |
# max_per_image is for instance segmentation. | |
max_per_image=num_queries, | |
iou_thr=0.8, | |
# In Mask2Former's panoptic postprocessing, | |
# it will filter mask area where score is less than 0.5 . | |
filter_low_score=True), | |
init_cfg=None) | |
task_name = 'nwpu_ins' | |
exp_name = 'E20230604_5' | |
logger = dict( | |
type='WandbLogger', | |
project=task_name, | |
group='samseg-mask2former', | |
name=exp_name | |
) | |
# logger = None | |
callbacks = [ | |
param_scheduler_callback, | |
dict( | |
type='ModelCheckpoint', | |
dirpath=f'results/{task_name}/{exp_name}/checkpoints', | |
save_last=True, | |
mode='max', | |
monitor='valsegm_map_0', | |
save_top_k=2, | |
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}' | |
), | |
dict( | |
type='LearningRateMonitor', | |
logging_interval='step' | |
) | |
] | |
trainer_cfg = dict( | |
compiled_model=False, | |
accelerator="auto", | |
strategy="auto", | |
# strategy="ddp", | |
# strategy='ddp_find_unused_parameters_true', | |
# precision='32', | |
# precision='16-mixed', | |
devices=8, | |
default_root_dir=f'results/{task_name}/{exp_name}', | |
# default_root_dir='results/tmp', | |
max_epochs=max_epochs, | |
logger=logger, | |
callbacks=callbacks, | |
log_every_n_steps=5, | |
check_val_every_n_epoch=5, | |
benchmark=True, | |
# sync_batchnorm=True, | |
# fast_dev_run=True, | |
# limit_train_batches=1, | |
# limit_val_batches=0, | |
# limit_test_batches=None, | |
# limit_predict_batches=None, | |
# overfit_batches=0.0, | |
# val_check_interval=None, | |
# num_sanity_val_steps=0, | |
# enable_checkpointing=None, | |
# enable_progress_bar=None, | |
# enable_model_summary=None, | |
# accumulate_grad_batches=32, | |
# gradient_clip_val=15, | |
# gradient_clip_algorithm='norm', | |
# deterministic=None, | |
# inference_mode: bool=True, | |
use_distributed_sampler=True, | |
# profiler="simple", | |
# detect_anomaly=False, | |
# barebones=False, | |
# plugins=None, | |
# reload_dataloaders_every_n_epochs=0, | |
) | |
backend_args = None | |
train_pipeline = [ | |
dict(type='mmdet.LoadImageFromFile'), | |
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
dict(type='mmdet.Resize', scale=image_size), | |
dict(type='mmdet.RandomFlip', prob=0.5), | |
dict(type='mmdet.PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | |
dict(type='mmdet.Resize', scale=image_size), | |
# If you don't have a gt annotation, delete the pipeline | |
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='mmdet.PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_batch_size_per_gpu = 4 | |
train_num_workers = 4 | |
test_batch_size_per_gpu = 4 | |
test_num_workers = 4 | |
persistent_workers = True | |
data_parent = '/mnt/search01/dataset/cky_data/NWPU10' | |
train_data_prefix = '' | |
val_data_prefix = '' | |
dataset_type = 'NWPUInsSegDataset' | |
val_loader = dict( | |
batch_size=test_batch_size_per_gpu, | |
num_workers=test_num_workers, | |
persistent_workers=persistent_workers, | |
pin_memory=True, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_parent, | |
ann_file='NWPU_instances_val.json', | |
data_prefix=dict(img_path='positive image set'), | |
test_mode=True, | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
datamodule_cfg = dict( | |
type='PLDataModule', | |
train_loader=dict( | |
batch_size=train_batch_size_per_gpu, | |
num_workers=train_num_workers, | |
persistent_workers=persistent_workers, | |
pin_memory=True, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_parent, | |
ann_file='NWPU_instances_train.json', | |
data_prefix=dict(img_path='positive image set'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args) | |
), | |
val_loader=val_loader, | |
# test_loader=val_loader | |
predict_loader=val_loader | |
) |