Spaces:
Runtime error
Runtime error
Upload 25 files
Browse files- configs/huggingface/rsprompter_anchor_NWPU_config.py +353 -0
- configs/huggingface/rsprompter_anchor_SSDD_config.py +369 -0
- configs/huggingface/rsprompter_anchor_WHU_config.py +371 -0
- configs/rsprompter/mask2former_nwpu_config.py +338 -0
- configs/rsprompter/mask2former_ssdd_config.py +335 -0
- configs/rsprompter/mask2former_whu_config.py +335 -0
- configs/rsprompter/maskrcnn_nwpu_config.py +339 -0
- configs/rsprompter/maskrcnn_ssdd_config.py +345 -0
- configs/rsprompter/maskrcnn_whu_config.py +349 -0
- configs/rsprompter/predict_rsprompter_anchor_nwpu.py +277 -0
- configs/rsprompter/rsprompter_anchor_nwpu_config.py +345 -0
- configs/rsprompter/rsprompter_anchor_ssdd_config.py +347 -0
- configs/rsprompter/rsprompter_anchor_whu_config.py +355 -0
- configs/rsprompter/rsprompter_query_nwpu_config.py +300 -0
- configs/rsprompter/rsprompter_query_ssdd_config.py +298 -0
- configs/rsprompter/rsprompter_query_whu_config.py +303 -0
- configs/rsprompter/samdet_fasterrcnn_nwpu_config.py +338 -0
- configs/rsprompter/samdet_fasterrcnn_ssdd_config.py +344 -0
- configs/rsprompter/samdet_fasterrcnn_whu_config.py +345 -0
- configs/rsprompter/samseg_mask2former_nwpu_config.py +350 -0
- configs/rsprompter/samseg_mask2former_ssdd_config.py +346 -0
- configs/rsprompter/samseg_mask2former_whu_config.py +349 -0
- configs/rsprompter/samseg_maskrcnn_nwpu_config.py +348 -0
- configs/rsprompter/samseg_maskrcnn_ssdd_config.py +345 -0
- configs/rsprompter/samseg_maskrcnn_whu_config.py +346 -0
configs/huggingface/rsprompter_anchor_NWPU_config.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 1200
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
image_size = (1024, 1024)
|
47 |
+
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_size_divisor=32,
|
54 |
+
pad_mask=True,
|
55 |
+
mask_pad_value=0,
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 10
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
prompt_shape = (60, 5)
|
62 |
+
|
63 |
+
model_cfg = dict(
|
64 |
+
type='SegSAMAnchorPLer',
|
65 |
+
hyperparameters=dict(
|
66 |
+
optimizer=optimizer,
|
67 |
+
param_scheduler=param_scheduler,
|
68 |
+
),
|
69 |
+
need_train_names=sub_model_train,
|
70 |
+
data_preprocessor=data_preprocessor,
|
71 |
+
backbone=dict(
|
72 |
+
type='vit_h',
|
73 |
+
# checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
74 |
+
# type='vit_b',
|
75 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
76 |
+
),
|
77 |
+
panoptic_head=dict(
|
78 |
+
type='SAMAnchorInstanceHead',
|
79 |
+
neck=dict(
|
80 |
+
type='SAMAggregatorNeck',
|
81 |
+
in_channels=[1280] * 32,
|
82 |
+
# in_channels=[768] * 12,
|
83 |
+
inner_channels=32,
|
84 |
+
selected_channels=range(4, 32, 2),
|
85 |
+
# selected_channels=range(4, 12, 2),
|
86 |
+
out_channels=256,
|
87 |
+
up_sample_scale=4,
|
88 |
+
),
|
89 |
+
rpn_head=dict(
|
90 |
+
type='mmdet.RPNHead',
|
91 |
+
in_channels=256,
|
92 |
+
feat_channels=256,
|
93 |
+
anchor_generator=dict(
|
94 |
+
type='mmdet.AnchorGenerator',
|
95 |
+
scales=[2, 4, 8, 16, 32, 64],
|
96 |
+
ratios=[0.5, 1.0, 2.0],
|
97 |
+
strides=[8, 16, 32]),
|
98 |
+
bbox_coder=dict(
|
99 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
100 |
+
target_means=[.0, .0, .0, .0],
|
101 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
102 |
+
loss_cls=dict(
|
103 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
104 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
105 |
+
roi_head=dict(
|
106 |
+
type='SAMAnchorPromptRoIHead',
|
107 |
+
bbox_roi_extractor=dict(
|
108 |
+
type='mmdet.SingleRoIExtractor',
|
109 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
110 |
+
out_channels=256,
|
111 |
+
featmap_strides=[8, 16, 32]),
|
112 |
+
bbox_head=dict(
|
113 |
+
type='mmdet.Shared2FCBBoxHead',
|
114 |
+
in_channels=256,
|
115 |
+
fc_out_channels=1024,
|
116 |
+
roi_feat_size=7,
|
117 |
+
num_classes=num_classes,
|
118 |
+
bbox_coder=dict(
|
119 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
120 |
+
target_means=[0., 0., 0., 0.],
|
121 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
122 |
+
reg_class_agnostic=False,
|
123 |
+
loss_cls=dict(
|
124 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
125 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
126 |
+
mask_roi_extractor=dict(
|
127 |
+
type='mmdet.SingleRoIExtractor',
|
128 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
129 |
+
out_channels=256,
|
130 |
+
featmap_strides=[8, 16, 32]),
|
131 |
+
mask_head=dict(
|
132 |
+
type='SAMPromptMaskHead',
|
133 |
+
per_query_point=prompt_shape[1],
|
134 |
+
with_sincos=True,
|
135 |
+
class_agnostic=True,
|
136 |
+
loss_mask=dict(
|
137 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
138 |
+
# model training and testing settings
|
139 |
+
train_cfg=dict(
|
140 |
+
rpn=dict(
|
141 |
+
assigner=dict(
|
142 |
+
type='mmdet.MaxIoUAssigner',
|
143 |
+
pos_iou_thr=0.7,
|
144 |
+
neg_iou_thr=0.3,
|
145 |
+
min_pos_iou=0.3,
|
146 |
+
match_low_quality=True,
|
147 |
+
ignore_iof_thr=-1),
|
148 |
+
sampler=dict(
|
149 |
+
type='mmdet.RandomSampler',
|
150 |
+
num=512,
|
151 |
+
pos_fraction=0.5,
|
152 |
+
neg_pos_ub=-1,
|
153 |
+
add_gt_as_proposals=False),
|
154 |
+
allowed_border=-1,
|
155 |
+
pos_weight=-1,
|
156 |
+
debug=False),
|
157 |
+
rpn_proposal=dict(
|
158 |
+
nms_pre=2000,
|
159 |
+
max_per_img=1000,
|
160 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
161 |
+
min_bbox_size=0),
|
162 |
+
rcnn=dict(
|
163 |
+
assigner=dict(
|
164 |
+
type='mmdet.MaxIoUAssigner',
|
165 |
+
pos_iou_thr=0.5,
|
166 |
+
neg_iou_thr=0.5,
|
167 |
+
min_pos_iou=0.5,
|
168 |
+
match_low_quality=True,
|
169 |
+
ignore_iof_thr=-1),
|
170 |
+
sampler=dict(
|
171 |
+
type='mmdet.RandomSampler',
|
172 |
+
num=256,
|
173 |
+
pos_fraction=0.25,
|
174 |
+
neg_pos_ub=-1,
|
175 |
+
add_gt_as_proposals=True),
|
176 |
+
mask_size=1024,
|
177 |
+
pos_weight=-1,
|
178 |
+
debug=False)),
|
179 |
+
test_cfg=dict(
|
180 |
+
rpn=dict(
|
181 |
+
nms_pre=1000,
|
182 |
+
max_per_img=1000,
|
183 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
184 |
+
min_bbox_size=0),
|
185 |
+
rcnn=dict(
|
186 |
+
score_thr=0.05,
|
187 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
188 |
+
max_per_img=100,
|
189 |
+
mask_thr_binary=0.5)
|
190 |
+
)
|
191 |
+
)
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
task_name = 'nwpu_ins'
|
196 |
+
exp_name = 'E20230629_1'
|
197 |
+
logger = dict(
|
198 |
+
type='WandbLogger',
|
199 |
+
project=task_name,
|
200 |
+
group='sam-anchor',
|
201 |
+
name=exp_name
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
callbacks = [
|
206 |
+
param_scheduler_callback,
|
207 |
+
dict(
|
208 |
+
type='ModelCheckpoint',
|
209 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
210 |
+
save_last=True,
|
211 |
+
mode='max',
|
212 |
+
monitor='valsegm_map_0',
|
213 |
+
save_top_k=3,
|
214 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
215 |
+
),
|
216 |
+
dict(
|
217 |
+
type='LearningRateMonitor',
|
218 |
+
logging_interval='step'
|
219 |
+
)
|
220 |
+
]
|
221 |
+
|
222 |
+
vis_backends = [dict(type='mmdet.LocalVisBackend')]
|
223 |
+
visualizer = dict(
|
224 |
+
type='mmdet.DetLocalVisualizer',
|
225 |
+
vis_backends=vis_backends,
|
226 |
+
name='visualizer',
|
227 |
+
fig_save_cfg=dict(
|
228 |
+
frameon=False,
|
229 |
+
figsize=(40, 20),
|
230 |
+
# dpi=300,
|
231 |
+
),
|
232 |
+
line_width=2,
|
233 |
+
alpha=0.8
|
234 |
+
)
|
235 |
+
|
236 |
+
trainer_cfg = dict(
|
237 |
+
compiled_model=False,
|
238 |
+
accelerator="auto",
|
239 |
+
strategy="auto",
|
240 |
+
# strategy="ddp",
|
241 |
+
# strategy='ddp_find_unused_parameters_true',
|
242 |
+
# precision='32',
|
243 |
+
# precision='16-mixed',
|
244 |
+
devices=8,
|
245 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
246 |
+
# default_root_dir='results/tmp',
|
247 |
+
max_epochs=max_epochs,
|
248 |
+
logger=logger,
|
249 |
+
callbacks=callbacks,
|
250 |
+
log_every_n_steps=5,
|
251 |
+
check_val_every_n_epoch=5,
|
252 |
+
benchmark=True,
|
253 |
+
# sync_batchnorm=True,
|
254 |
+
# fast_dev_run=True,
|
255 |
+
|
256 |
+
# limit_train_batches=1,
|
257 |
+
# limit_val_batches=0,
|
258 |
+
# limit_test_batches=None,
|
259 |
+
# limit_predict_batches=None,
|
260 |
+
# overfit_batches=0.0,
|
261 |
+
|
262 |
+
# val_check_interval=None,
|
263 |
+
# num_sanity_val_steps=0,
|
264 |
+
# enable_checkpointing=None,
|
265 |
+
# enable_progress_bar=None,
|
266 |
+
# enable_model_summary=None,
|
267 |
+
# accumulate_grad_batches=32,
|
268 |
+
# gradient_clip_val=15,
|
269 |
+
# gradient_clip_algorithm='norm',
|
270 |
+
# deterministic=None,
|
271 |
+
# inference_mode: bool=True,
|
272 |
+
use_distributed_sampler=True,
|
273 |
+
# profiler="simple",
|
274 |
+
# detect_anomaly=False,
|
275 |
+
# barebones=False,
|
276 |
+
# plugins=None,
|
277 |
+
# reload_dataloaders_every_n_epochs=0,
|
278 |
+
)
|
279 |
+
|
280 |
+
|
281 |
+
backend_args = None
|
282 |
+
train_pipeline = [
|
283 |
+
dict(type='mmdet.LoadImageFromFile'),
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(type='mmdet.Resize', scale=image_size),
|
286 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
287 |
+
dict(type='mmdet.PackDetInputs')
|
288 |
+
]
|
289 |
+
|
290 |
+
test_pipeline = [
|
291 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
292 |
+
dict(type='mmdet.Resize', scale=image_size),
|
293 |
+
# If you don't have a gt annotation, delete the pipeline
|
294 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
295 |
+
dict(
|
296 |
+
type='mmdet.PackDetInputs',
|
297 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
298 |
+
'scale_factor'))
|
299 |
+
]
|
300 |
+
|
301 |
+
predict_pipeline = [
|
302 |
+
dict(type='mmdet.Resize', scale=image_size),
|
303 |
+
dict(
|
304 |
+
type='mmdet.PackDetInputs',
|
305 |
+
meta_keys=('ori_shape', 'img_shape', 'scale_factor'))
|
306 |
+
]
|
307 |
+
|
308 |
+
train_batch_size_per_gpu = 2
|
309 |
+
train_num_workers = 2
|
310 |
+
test_batch_size_per_gpu = 2
|
311 |
+
test_num_workers = 2
|
312 |
+
persistent_workers = True
|
313 |
+
|
314 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
315 |
+
train_data_prefix = ''
|
316 |
+
val_data_prefix = ''
|
317 |
+
dataset_type = 'NWPUInsSegDataset'
|
318 |
+
|
319 |
+
val_loader = dict(
|
320 |
+
batch_size=test_batch_size_per_gpu,
|
321 |
+
num_workers=test_num_workers,
|
322 |
+
persistent_workers=persistent_workers,
|
323 |
+
pin_memory=True,
|
324 |
+
dataset=dict(
|
325 |
+
type=dataset_type,
|
326 |
+
data_root=data_parent,
|
327 |
+
ann_file='NWPU_instances_val.json',
|
328 |
+
data_prefix=dict(img_path='positive image set'),
|
329 |
+
test_mode=True,
|
330 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
331 |
+
pipeline=test_pipeline,
|
332 |
+
backend_args=backend_args))
|
333 |
+
|
334 |
+
datamodule_cfg = dict(
|
335 |
+
type='PLDataModule',
|
336 |
+
train_loader=dict(
|
337 |
+
batch_size=train_batch_size_per_gpu,
|
338 |
+
num_workers=train_num_workers,
|
339 |
+
persistent_workers=persistent_workers,
|
340 |
+
pin_memory=True,
|
341 |
+
dataset=dict(
|
342 |
+
type=dataset_type,
|
343 |
+
data_root=data_parent,
|
344 |
+
ann_file='NWPU_instances_train.json',
|
345 |
+
data_prefix=dict(img_path='positive image set'),
|
346 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
347 |
+
pipeline=train_pipeline,
|
348 |
+
backend_args=backend_args)
|
349 |
+
),
|
350 |
+
val_loader=val_loader,
|
351 |
+
# test_loader=val_loader
|
352 |
+
predict_loader=val_loader
|
353 |
+
)
|
configs/huggingface/rsprompter_anchor_SSDD_config.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 1000
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
prompt_shape = (30, 5)
|
72 |
+
|
73 |
+
model_cfg = dict(
|
74 |
+
type='SegSAMAnchorPLer',
|
75 |
+
hyperparameters=dict(
|
76 |
+
optimizer=optimizer,
|
77 |
+
param_scheduler=param_scheduler,
|
78 |
+
evaluator=evaluator,
|
79 |
+
),
|
80 |
+
need_train_names=sub_model_train,
|
81 |
+
data_preprocessor=data_preprocessor,
|
82 |
+
backbone=dict(
|
83 |
+
type='vit_h',
|
84 |
+
# checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
85 |
+
# type='vit_b',
|
86 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
87 |
+
),
|
88 |
+
panoptic_head=dict(
|
89 |
+
type='SAMAnchorInstanceHead',
|
90 |
+
neck=dict(
|
91 |
+
type='SAMAggregatorNeck',
|
92 |
+
in_channels=[1280] * 32,
|
93 |
+
# in_channels=[768] * 12,
|
94 |
+
inner_channels=32,
|
95 |
+
selected_channels=range(4, 32, 2),
|
96 |
+
# selected_channels=range(4, 12, 2),
|
97 |
+
out_channels=256,
|
98 |
+
up_sample_scale=4,
|
99 |
+
),
|
100 |
+
rpn_head=dict(
|
101 |
+
type='mmdet.RPNHead',
|
102 |
+
in_channels=256,
|
103 |
+
feat_channels=256,
|
104 |
+
anchor_generator=dict(
|
105 |
+
type='mmdet.AnchorGenerator',
|
106 |
+
scales=[2, 4, 8, 16, 32, 64],
|
107 |
+
ratios=[0.5, 1.0, 2.0],
|
108 |
+
strides=[8, 16, 32]),
|
109 |
+
bbox_coder=dict(
|
110 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
111 |
+
target_means=[.0, .0, .0, .0],
|
112 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
113 |
+
loss_cls=dict(
|
114 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
115 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
116 |
+
roi_head=dict(
|
117 |
+
type='SAMAnchorPromptRoIHead',
|
118 |
+
bbox_roi_extractor=dict(
|
119 |
+
type='mmdet.SingleRoIExtractor',
|
120 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
121 |
+
out_channels=256,
|
122 |
+
featmap_strides=[8, 16, 32]),
|
123 |
+
bbox_head=dict(
|
124 |
+
type='mmdet.Shared2FCBBoxHead',
|
125 |
+
in_channels=256,
|
126 |
+
fc_out_channels=1024,
|
127 |
+
roi_feat_size=7,
|
128 |
+
num_classes=num_classes,
|
129 |
+
bbox_coder=dict(
|
130 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
131 |
+
target_means=[0., 0., 0., 0.],
|
132 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
133 |
+
reg_class_agnostic=False,
|
134 |
+
loss_cls=dict(
|
135 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
136 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
137 |
+
mask_roi_extractor=dict(
|
138 |
+
type='mmdet.SingleRoIExtractor',
|
139 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
140 |
+
out_channels=256,
|
141 |
+
featmap_strides=[8, 16, 32]),
|
142 |
+
mask_head=dict(
|
143 |
+
type='SAMPromptMaskHead',
|
144 |
+
per_query_point=prompt_shape[1],
|
145 |
+
with_sincos=True,
|
146 |
+
class_agnostic=True,
|
147 |
+
loss_mask=dict(
|
148 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
149 |
+
# model training and testing settings
|
150 |
+
train_cfg=dict(
|
151 |
+
rpn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.7,
|
155 |
+
neg_iou_thr=0.3,
|
156 |
+
min_pos_iou=0.3,
|
157 |
+
match_low_quality=True,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.5,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=False),
|
165 |
+
allowed_border=-1,
|
166 |
+
pos_weight=-1,
|
167 |
+
debug=False),
|
168 |
+
rpn_proposal=dict(
|
169 |
+
nms_pre=2000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
assigner=dict(
|
175 |
+
type='mmdet.MaxIoUAssigner',
|
176 |
+
pos_iou_thr=0.5,
|
177 |
+
neg_iou_thr=0.5,
|
178 |
+
min_pos_iou=0.5,
|
179 |
+
match_low_quality=True,
|
180 |
+
ignore_iof_thr=-1),
|
181 |
+
sampler=dict(
|
182 |
+
type='mmdet.RandomSampler',
|
183 |
+
num=256,
|
184 |
+
pos_fraction=0.25,
|
185 |
+
neg_pos_ub=-1,
|
186 |
+
add_gt_as_proposals=True),
|
187 |
+
mask_size=1024,
|
188 |
+
pos_weight=-1,
|
189 |
+
debug=False)),
|
190 |
+
test_cfg=dict(
|
191 |
+
rpn=dict(
|
192 |
+
nms_pre=1000,
|
193 |
+
max_per_img=1000,
|
194 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
195 |
+
min_bbox_size=0),
|
196 |
+
rcnn=dict(
|
197 |
+
score_thr=0.05,
|
198 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
199 |
+
max_per_img=100,
|
200 |
+
mask_thr_binary=0.5)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
task_name = 'whu_ins'
|
206 |
+
exp_name = 'E20230629_0'
|
207 |
+
logger = dict(
|
208 |
+
type='WandbLogger',
|
209 |
+
project=task_name,
|
210 |
+
group='sam-anchor',
|
211 |
+
name=exp_name
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
vis_backends = [dict(type='mmdet.LocalVisBackend')]
|
216 |
+
visualizer = dict(
|
217 |
+
type='mmdet.DetLocalVisualizer',
|
218 |
+
vis_backends=vis_backends,
|
219 |
+
name='visualizer',
|
220 |
+
fig_save_cfg=dict(
|
221 |
+
frameon=False,
|
222 |
+
figsize=(40, 20),
|
223 |
+
# dpi=300,
|
224 |
+
),
|
225 |
+
line_width=2,
|
226 |
+
alpha=0.8
|
227 |
+
)
|
228 |
+
|
229 |
+
callbacks = [
|
230 |
+
param_scheduler_callback,
|
231 |
+
dict(
|
232 |
+
type='ModelCheckpoint',
|
233 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
234 |
+
save_last=True,
|
235 |
+
mode='max',
|
236 |
+
monitor='valsegm_map_0',
|
237 |
+
save_top_k=3,
|
238 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
239 |
+
),
|
240 |
+
dict(
|
241 |
+
type='LearningRateMonitor',
|
242 |
+
logging_interval='step'
|
243 |
+
)
|
244 |
+
]
|
245 |
+
|
246 |
+
|
247 |
+
trainer_cfg = dict(
|
248 |
+
compiled_model=False,
|
249 |
+
accelerator="auto",
|
250 |
+
strategy="auto",
|
251 |
+
# strategy="ddp",
|
252 |
+
# strategy='ddp_find_unused_parameters_true',
|
253 |
+
# precision='32',
|
254 |
+
# precision='16-mixed',
|
255 |
+
devices=8,
|
256 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
257 |
+
# default_root_dir='results/tmp',
|
258 |
+
max_epochs=max_epochs,
|
259 |
+
logger=logger,
|
260 |
+
callbacks=callbacks,
|
261 |
+
log_every_n_steps=5,
|
262 |
+
check_val_every_n_epoch=5,
|
263 |
+
benchmark=True,
|
264 |
+
# sync_batchnorm=True,
|
265 |
+
# fast_dev_run=True,
|
266 |
+
|
267 |
+
# limit_train_batches=1,
|
268 |
+
# limit_val_batches=0,
|
269 |
+
# limit_test_batches=None,
|
270 |
+
# limit_predict_batches=None,
|
271 |
+
# overfit_batches=0.0,
|
272 |
+
|
273 |
+
# val_check_interval=None,
|
274 |
+
# num_sanity_val_steps=0,
|
275 |
+
# enable_checkpointing=None,
|
276 |
+
# enable_progress_bar=None,
|
277 |
+
# enable_model_summary=None,
|
278 |
+
# accumulate_grad_batches=32,
|
279 |
+
# gradient_clip_val=15,
|
280 |
+
# gradient_clip_algorithm='norm',
|
281 |
+
# deterministic=None,
|
282 |
+
# inference_mode: bool=True,
|
283 |
+
use_distributed_sampler=True,
|
284 |
+
# profiler="simple",
|
285 |
+
# detect_anomaly=False,
|
286 |
+
# barebones=False,
|
287 |
+
# plugins=None,
|
288 |
+
# reload_dataloaders_every_n_epochs=0,
|
289 |
+
)
|
290 |
+
|
291 |
+
|
292 |
+
backend_args = None
|
293 |
+
train_pipeline = [
|
294 |
+
dict(type='mmdet.LoadImageFromFile'),
|
295 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
296 |
+
dict(type='mmdet.Resize', scale=image_size),
|
297 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
298 |
+
dict(type='mmdet.PackDetInputs')
|
299 |
+
]
|
300 |
+
|
301 |
+
test_pipeline = [
|
302 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
303 |
+
dict(type='mmdet.Resize', scale=image_size),
|
304 |
+
# If you don't have a gt annotation, delete the pipeline
|
305 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
306 |
+
dict(
|
307 |
+
type='mmdet.PackDetInputs',
|
308 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
309 |
+
'scale_factor'))
|
310 |
+
]
|
311 |
+
|
312 |
+
|
313 |
+
train_batch_size_per_gpu = 2
|
314 |
+
train_num_workers = 2
|
315 |
+
test_batch_size_per_gpu = 2
|
316 |
+
test_num_workers = 2
|
317 |
+
persistent_workers = True
|
318 |
+
|
319 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
320 |
+
dataset_type = 'SSDDInsSegDataset'
|
321 |
+
|
322 |
+
|
323 |
+
val_loader = dict(
|
324 |
+
batch_size=test_batch_size_per_gpu,
|
325 |
+
num_workers=test_num_workers,
|
326 |
+
persistent_workers=persistent_workers,
|
327 |
+
pin_memory=True,
|
328 |
+
dataset=dict(
|
329 |
+
type=dataset_type,
|
330 |
+
data_root=data_parent,
|
331 |
+
# ann_file='NWPU_instances_val.json',
|
332 |
+
# data_prefix=dict(img_path='positive image set'),
|
333 |
+
ann_file='annotations/SSDD_instances_val.json',
|
334 |
+
data_prefix=dict(img_path='imgs'),
|
335 |
+
test_mode=True,
|
336 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
337 |
+
pipeline=test_pipeline,
|
338 |
+
backend_args=backend_args))
|
339 |
+
|
340 |
+
predict_pipeline = [
|
341 |
+
dict(type='mmdet.Resize', scale=image_size),
|
342 |
+
dict(
|
343 |
+
type='mmdet.PackDetInputs',
|
344 |
+
meta_keys=('ori_shape', 'img_shape', 'scale_factor'))
|
345 |
+
]
|
346 |
+
|
347 |
+
|
348 |
+
datamodule_cfg = dict(
|
349 |
+
type='PLDataModule',
|
350 |
+
train_loader=dict(
|
351 |
+
batch_size=train_batch_size_per_gpu,
|
352 |
+
num_workers=train_num_workers,
|
353 |
+
persistent_workers=persistent_workers,
|
354 |
+
pin_memory=True,
|
355 |
+
dataset=dict(
|
356 |
+
type=dataset_type,
|
357 |
+
data_root=data_parent,
|
358 |
+
# ann_file='NWPU_instances_train.json',
|
359 |
+
# data_prefix=dict(img_path='positive image set'),
|
360 |
+
ann_file='annotations/SSDD_instances_train.json',
|
361 |
+
data_prefix=dict(img_path='imgs'),
|
362 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
363 |
+
pipeline=train_pipeline,
|
364 |
+
backend_args=backend_args)
|
365 |
+
),
|
366 |
+
val_loader=val_loader,
|
367 |
+
# test_loader=val_loader
|
368 |
+
predict_loader=val_loader
|
369 |
+
)
|
configs/huggingface/rsprompter_anchor_WHU_config.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 2000
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
image_size = (1024, 1024)
|
47 |
+
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_size_divisor=32,
|
54 |
+
pad_mask=True,
|
55 |
+
mask_pad_value=0,
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 1
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
prompt_shape = (90, 4)
|
62 |
+
|
63 |
+
model_cfg = dict(
|
64 |
+
type='SegSAMAnchorPLer',
|
65 |
+
hyperparameters=dict(
|
66 |
+
optimizer=optimizer,
|
67 |
+
param_scheduler=param_scheduler,
|
68 |
+
),
|
69 |
+
need_train_names=sub_model_train,
|
70 |
+
data_preprocessor=data_preprocessor,
|
71 |
+
backbone=dict(
|
72 |
+
type='vit_h'
|
73 |
+
# type='vit_b',
|
74 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
75 |
+
),
|
76 |
+
panoptic_head=dict(
|
77 |
+
type='SAMAnchorInstanceHead',
|
78 |
+
neck=dict(
|
79 |
+
type='SAMAggregatorNeck',
|
80 |
+
in_channels=[1280] * 32,
|
81 |
+
# in_channels=[768] * 12,
|
82 |
+
inner_channels=32,
|
83 |
+
selected_channels=range(4, 32, 2),
|
84 |
+
# selected_channels=range(4, 12, 2),
|
85 |
+
out_channels=256,
|
86 |
+
up_sample_scale=4,
|
87 |
+
),
|
88 |
+
rpn_head=dict(
|
89 |
+
type='mmdet.RPNHead',
|
90 |
+
in_channels=256,
|
91 |
+
feat_channels=256,
|
92 |
+
anchor_generator=dict(
|
93 |
+
type='mmdet.AnchorGenerator',
|
94 |
+
scales=[2, 4, 8, 16, 32, 64],
|
95 |
+
ratios=[0.5, 1.0, 2.0],
|
96 |
+
strides=[8, 16, 32]),
|
97 |
+
bbox_coder=dict(
|
98 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
99 |
+
target_means=[.0, .0, .0, .0],
|
100 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
101 |
+
loss_cls=dict(
|
102 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
103 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
104 |
+
roi_head=dict(
|
105 |
+
type='SAMAnchorPromptRoIHead',
|
106 |
+
bbox_roi_extractor=dict(
|
107 |
+
type='mmdet.SingleRoIExtractor',
|
108 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
109 |
+
out_channels=256,
|
110 |
+
featmap_strides=[8, 16, 32]),
|
111 |
+
bbox_head=dict(
|
112 |
+
type='mmdet.Shared2FCBBoxHead',
|
113 |
+
in_channels=256,
|
114 |
+
fc_out_channels=1024,
|
115 |
+
roi_feat_size=7,
|
116 |
+
num_classes=num_classes,
|
117 |
+
bbox_coder=dict(
|
118 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
119 |
+
target_means=[0., 0., 0., 0.],
|
120 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
121 |
+
reg_class_agnostic=False,
|
122 |
+
loss_cls=dict(
|
123 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
124 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
125 |
+
mask_roi_extractor=dict(
|
126 |
+
type='mmdet.SingleRoIExtractor',
|
127 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
128 |
+
out_channels=256,
|
129 |
+
featmap_strides=[8, 16, 32]),
|
130 |
+
mask_head=dict(
|
131 |
+
type='SAMPromptMaskHead',
|
132 |
+
per_query_point=prompt_shape[1],
|
133 |
+
with_sincos=True,
|
134 |
+
class_agnostic=True,
|
135 |
+
loss_mask=dict(
|
136 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
137 |
+
# model training and testing settings
|
138 |
+
train_cfg=dict(
|
139 |
+
rpn=dict(
|
140 |
+
assigner=dict(
|
141 |
+
type='mmdet.MaxIoUAssigner',
|
142 |
+
pos_iou_thr=0.7,
|
143 |
+
neg_iou_thr=0.3,
|
144 |
+
min_pos_iou=0.3,
|
145 |
+
match_low_quality=True,
|
146 |
+
ignore_iof_thr=-1),
|
147 |
+
sampler=dict(
|
148 |
+
type='mmdet.RandomSampler',
|
149 |
+
num=512,
|
150 |
+
pos_fraction=0.5,
|
151 |
+
neg_pos_ub=-1,
|
152 |
+
add_gt_as_proposals=False),
|
153 |
+
allowed_border=-1,
|
154 |
+
pos_weight=-1,
|
155 |
+
debug=False),
|
156 |
+
rpn_proposal=dict(
|
157 |
+
nms_pre=2000,
|
158 |
+
max_per_img=1000,
|
159 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
160 |
+
min_bbox_size=0),
|
161 |
+
rcnn=dict(
|
162 |
+
assigner=dict(
|
163 |
+
type='mmdet.MaxIoUAssigner',
|
164 |
+
pos_iou_thr=0.5,
|
165 |
+
neg_iou_thr=0.5,
|
166 |
+
min_pos_iou=0.5,
|
167 |
+
match_low_quality=True,
|
168 |
+
ignore_iof_thr=-1),
|
169 |
+
sampler=dict(
|
170 |
+
type='mmdet.RandomSampler',
|
171 |
+
num=256,
|
172 |
+
pos_fraction=0.25,
|
173 |
+
neg_pos_ub=-1,
|
174 |
+
add_gt_as_proposals=True),
|
175 |
+
mask_size=1024,
|
176 |
+
pos_weight=-1,
|
177 |
+
debug=False)),
|
178 |
+
test_cfg=dict(
|
179 |
+
rpn=dict(
|
180 |
+
nms_pre=1000,
|
181 |
+
max_per_img=1000,
|
182 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
183 |
+
min_bbox_size=0),
|
184 |
+
rcnn=dict(
|
185 |
+
score_thr=0.05,
|
186 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
187 |
+
max_per_img=100,
|
188 |
+
mask_thr_binary=0.5)
|
189 |
+
)
|
190 |
+
)
|
191 |
+
)
|
192 |
+
|
193 |
+
task_name = 'whu_ins'
|
194 |
+
exp_name = 'E20230629_0'
|
195 |
+
logger = dict(
|
196 |
+
type='WandbLogger',
|
197 |
+
project=task_name,
|
198 |
+
group='sam-anchor',
|
199 |
+
name=exp_name
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
callbacks = [
|
204 |
+
param_scheduler_callback,
|
205 |
+
dict(
|
206 |
+
type='ModelCheckpoint',
|
207 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
208 |
+
save_last=True,
|
209 |
+
mode='max',
|
210 |
+
monitor='valsegm_map_0',
|
211 |
+
save_top_k=3,
|
212 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
213 |
+
),
|
214 |
+
dict(
|
215 |
+
type='LearningRateMonitor',
|
216 |
+
logging_interval='step'
|
217 |
+
),
|
218 |
+
dict(
|
219 |
+
type='DetVisualizationHook',
|
220 |
+
draw=True,
|
221 |
+
interval=1,
|
222 |
+
score_thr=0.4,
|
223 |
+
show=False,
|
224 |
+
wait_time=1.,
|
225 |
+
test_out_dir='visualization',
|
226 |
+
)
|
227 |
+
]
|
228 |
+
|
229 |
+
vis_backends = [dict(type='mmdet.LocalVisBackend')]
|
230 |
+
visualizer = dict(
|
231 |
+
type='mmdet.DetLocalVisualizer',
|
232 |
+
vis_backends=vis_backends,
|
233 |
+
name='visualizer',
|
234 |
+
fig_save_cfg=dict(
|
235 |
+
frameon=False,
|
236 |
+
figsize=(40, 20),
|
237 |
+
# dpi=300,
|
238 |
+
),
|
239 |
+
line_width=2,
|
240 |
+
alpha=0.8
|
241 |
+
)
|
242 |
+
|
243 |
+
trainer_cfg = dict(
|
244 |
+
compiled_model=False,
|
245 |
+
accelerator="auto",
|
246 |
+
strategy="auto",
|
247 |
+
# strategy="ddp",
|
248 |
+
# strategy='ddp_find_unused_parameters_true',
|
249 |
+
# precision='32',
|
250 |
+
# precision='16-mixed',
|
251 |
+
devices=8,
|
252 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
253 |
+
# default_root_dir='results/tmp',
|
254 |
+
max_epochs=max_epochs,
|
255 |
+
logger=logger,
|
256 |
+
callbacks=callbacks,
|
257 |
+
log_every_n_steps=10,
|
258 |
+
check_val_every_n_epoch=5,
|
259 |
+
benchmark=True,
|
260 |
+
# sync_batchnorm=True,
|
261 |
+
# fast_dev_run=True,
|
262 |
+
|
263 |
+
# limit_train_batches=1,
|
264 |
+
# limit_val_batches=0,
|
265 |
+
# limit_test_batches=None,
|
266 |
+
# limit_predict_batches=None,
|
267 |
+
# overfit_batches=0.0,
|
268 |
+
|
269 |
+
# val_check_interval=None,
|
270 |
+
# num_sanity_val_steps=0,
|
271 |
+
# enable_checkpointing=None,
|
272 |
+
# enable_progress_bar=None,
|
273 |
+
# enable_model_summary=None,
|
274 |
+
# accumulate_grad_batches=32,
|
275 |
+
# gradient_clip_val=15,
|
276 |
+
# gradient_clip_algorithm='norm',
|
277 |
+
# deterministic=None,
|
278 |
+
# inference_mode: bool=True,
|
279 |
+
use_distributed_sampler=True,
|
280 |
+
# profiler="simple",
|
281 |
+
# detect_anomaly=False,
|
282 |
+
# barebones=False,
|
283 |
+
# plugins=None,
|
284 |
+
# reload_dataloaders_every_n_epochs=0,
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
backend_args = None
|
289 |
+
train_pipeline = [
|
290 |
+
dict(type='mmdet.LoadImageFromFile'),
|
291 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
292 |
+
dict(type='mmdet.Resize', scale=image_size),
|
293 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
294 |
+
dict(type='mmdet.PackDetInputs')
|
295 |
+
]
|
296 |
+
|
297 |
+
test_pipeline = [
|
298 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
299 |
+
dict(type='mmdet.Resize', scale=image_size),
|
300 |
+
# If you don't have a gt annotation, delete the pipeline
|
301 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
302 |
+
dict(
|
303 |
+
type='mmdet.PackDetInputs',
|
304 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
305 |
+
'scale_factor'))
|
306 |
+
]
|
307 |
+
|
308 |
+
predict_pipeline = [
|
309 |
+
dict(type='mmdet.Resize', scale=image_size),
|
310 |
+
dict(
|
311 |
+
type='mmdet.PackDetInputs',
|
312 |
+
meta_keys=('ori_shape', 'img_shape', 'scale_factor'))
|
313 |
+
]
|
314 |
+
|
315 |
+
|
316 |
+
train_batch_size_per_gpu = 2
|
317 |
+
train_num_workers = 2
|
318 |
+
test_batch_size_per_gpu = 2
|
319 |
+
test_num_workers = 2
|
320 |
+
persistent_workers = True
|
321 |
+
|
322 |
+
|
323 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
324 |
+
train_data_prefix = 'train/'
|
325 |
+
val_data_prefix = 'test/'
|
326 |
+
dataset_type = 'WHUInsSegDataset'
|
327 |
+
|
328 |
+
|
329 |
+
val_loader = dict(
|
330 |
+
batch_size=test_batch_size_per_gpu,
|
331 |
+
num_workers=test_num_workers,
|
332 |
+
persistent_workers=persistent_workers,
|
333 |
+
pin_memory=True,
|
334 |
+
dataset=dict(
|
335 |
+
type=dataset_type,
|
336 |
+
data_root=data_parent,
|
337 |
+
# ann_file='NWPU_instances_val.json',
|
338 |
+
# data_prefix=dict(img_path='positive image set'),
|
339 |
+
# ann_file='annotations/SSDD_instances_val.json',
|
340 |
+
# data_prefix=dict(img_path='imgs'),
|
341 |
+
ann_file='annotations/WHU_building_test.json',
|
342 |
+
data_prefix=dict(img_path=val_data_prefix + '/image'),
|
343 |
+
test_mode=True,
|
344 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
345 |
+
pipeline=test_pipeline,
|
346 |
+
backend_args=backend_args))
|
347 |
+
|
348 |
+
datamodule_cfg = dict(
|
349 |
+
type='PLDataModule',
|
350 |
+
train_loader=dict(
|
351 |
+
batch_size=train_batch_size_per_gpu,
|
352 |
+
num_workers=train_num_workers,
|
353 |
+
persistent_workers=persistent_workers,
|
354 |
+
pin_memory=True,
|
355 |
+
dataset=dict(
|
356 |
+
type=dataset_type,
|
357 |
+
data_root=data_parent,
|
358 |
+
# ann_file='NWPU_instances_train.json',
|
359 |
+
# data_prefix=dict(img_path='positive image set'),
|
360 |
+
# ann_file='annotations/SSDD_instances_train.json',
|
361 |
+
# data_prefix=dict(img_path='imgs'),
|
362 |
+
ann_file='annotations/WHU_building_train.json',
|
363 |
+
data_prefix=dict(img_path=train_data_prefix + '/image'),
|
364 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
365 |
+
pipeline=train_pipeline,
|
366 |
+
backend_args=backend_args)
|
367 |
+
),
|
368 |
+
val_loader=val_loader,
|
369 |
+
# test_loader=val_loader
|
370 |
+
predict_loader=val_loader
|
371 |
+
)
|
configs/rsprompter/mask2former_nwpu_config.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], allow_failed_imports=False)
|
2 |
+
max_epochs = 2000
|
3 |
+
|
4 |
+
optimizer = dict(
|
5 |
+
type='AdamW',
|
6 |
+
lr=0.0002,
|
7 |
+
weight_decay=1e-4
|
8 |
+
)
|
9 |
+
|
10 |
+
param_scheduler = [
|
11 |
+
# warm up learning rate scheduler
|
12 |
+
dict(
|
13 |
+
type='LinearLR',
|
14 |
+
start_factor=1e-4,
|
15 |
+
by_epoch=True,
|
16 |
+
begin=0,
|
17 |
+
end=1,
|
18 |
+
# update by iter
|
19 |
+
convert_to_iter_based=True),
|
20 |
+
# main learning rate scheduler
|
21 |
+
dict(
|
22 |
+
type='CosineAnnealingLR',
|
23 |
+
T_max=max_epochs,
|
24 |
+
by_epoch=True,
|
25 |
+
begin=1,
|
26 |
+
end=max_epochs,
|
27 |
+
)
|
28 |
+
]
|
29 |
+
|
30 |
+
param_scheduler_callback = dict(
|
31 |
+
type='ParamSchedulerHook'
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
evaluator_ = dict(
|
36 |
+
type='CocoPLMetric',
|
37 |
+
metric=['bbox', 'segm'],
|
38 |
+
proposal_nums=[1, 10, 100]
|
39 |
+
)
|
40 |
+
|
41 |
+
evaluator = dict(
|
42 |
+
val_evaluator=evaluator_,
|
43 |
+
test_evaluator=evaluator_
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
image_size = (1024, 1024)
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_mask=True,
|
54 |
+
mask_pad_value=0,
|
55 |
+
pad_size_divisor=32
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 10
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
num_queries = 60
|
62 |
+
|
63 |
+
# model settings
|
64 |
+
model = dict(
|
65 |
+
type='mmdet.Mask2Former',
|
66 |
+
data_preprocessor=data_preprocessor,
|
67 |
+
backbone=dict(
|
68 |
+
type='mmdet.ResNet',
|
69 |
+
depth=50,
|
70 |
+
num_stages=4,
|
71 |
+
out_indices=(0, 1, 2, 3),
|
72 |
+
frozen_stages=-1,
|
73 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
74 |
+
norm_eval=True,
|
75 |
+
style='pytorch',
|
76 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
77 |
+
panoptic_head=dict(
|
78 |
+
type='mmdet.Mask2FormerHead',
|
79 |
+
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
|
80 |
+
strides=[4, 8, 16, 32],
|
81 |
+
feat_channels=256,
|
82 |
+
out_channels=256,
|
83 |
+
num_things_classes=num_things_classes,
|
84 |
+
num_stuff_classes=num_stuff_classes,
|
85 |
+
num_queries=num_queries,
|
86 |
+
num_transformer_feat_level=3,
|
87 |
+
pixel_decoder=dict(
|
88 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
89 |
+
num_outs=3,
|
90 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
91 |
+
act_cfg=dict(type='ReLU'),
|
92 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
93 |
+
# num_layers=6,
|
94 |
+
num_layers=2,
|
95 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
96 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
97 |
+
embed_dims=256,
|
98 |
+
num_heads=8,
|
99 |
+
num_levels=3,
|
100 |
+
num_points=4,
|
101 |
+
dropout=0.0,
|
102 |
+
batch_first=True),
|
103 |
+
ffn_cfg=dict(
|
104 |
+
embed_dims=256,
|
105 |
+
feedforward_channels=1024,
|
106 |
+
num_fcs=2,
|
107 |
+
ffn_drop=0.0,
|
108 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
109 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
110 |
+
enforce_decoder_input_project=False,
|
111 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
112 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
113 |
+
return_intermediate=True,
|
114 |
+
# num_layers=9,
|
115 |
+
num_layers=3,
|
116 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
117 |
+
self_attn_cfg=dict( # MultiheadAttention
|
118 |
+
embed_dims=256,
|
119 |
+
num_heads=8,
|
120 |
+
dropout=0.0,
|
121 |
+
batch_first=True),
|
122 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
123 |
+
embed_dims=256,
|
124 |
+
num_heads=8,
|
125 |
+
dropout=0.0,
|
126 |
+
batch_first=True),
|
127 |
+
ffn_cfg=dict(
|
128 |
+
embed_dims=256,
|
129 |
+
feedforward_channels=2048,
|
130 |
+
num_fcs=2,
|
131 |
+
ffn_drop=0.0,
|
132 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
133 |
+
init_cfg=None),
|
134 |
+
loss_cls=dict(
|
135 |
+
type='mmdet.CrossEntropyLoss',
|
136 |
+
use_sigmoid=False,
|
137 |
+
loss_weight=2.0,
|
138 |
+
reduction='mean',
|
139 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
140 |
+
loss_mask=dict(
|
141 |
+
type='mmdet.CrossEntropyLoss',
|
142 |
+
use_sigmoid=True,
|
143 |
+
reduction='mean',
|
144 |
+
loss_weight=5.0),
|
145 |
+
loss_dice=dict(
|
146 |
+
type='mmdet.DiceLoss',
|
147 |
+
use_sigmoid=True,
|
148 |
+
activate=True,
|
149 |
+
reduction='mean',
|
150 |
+
naive_dice=True,
|
151 |
+
eps=1.0,
|
152 |
+
loss_weight=5.0)),
|
153 |
+
panoptic_fusion_head=dict(
|
154 |
+
type='mmdet.MaskFormerFusionHead',
|
155 |
+
num_things_classes=num_things_classes,
|
156 |
+
num_stuff_classes=num_stuff_classes,
|
157 |
+
loss_panoptic=None,
|
158 |
+
init_cfg=None),
|
159 |
+
train_cfg=dict(
|
160 |
+
num_points=12544,
|
161 |
+
oversample_ratio=3.0,
|
162 |
+
importance_sample_ratio=0.75,
|
163 |
+
assigner=dict(
|
164 |
+
type='mmdet.HungarianAssigner',
|
165 |
+
match_costs=[
|
166 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
167 |
+
dict(
|
168 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
169 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
170 |
+
]),
|
171 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
172 |
+
test_cfg=dict(
|
173 |
+
panoptic_on=False,
|
174 |
+
# For now, the dataset does not support
|
175 |
+
# evaluating semantic segmentation metric.
|
176 |
+
semantic_on=False,
|
177 |
+
instance_on=True,
|
178 |
+
# max_per_image is for instance segmentation.
|
179 |
+
max_per_image=100,
|
180 |
+
iou_thr=0.8,
|
181 |
+
# In Mask2Former's panoptic postprocessing,
|
182 |
+
# it will filter mask area where score is less than 0.5 .
|
183 |
+
filter_low_score=True),
|
184 |
+
init_cfg=None)
|
185 |
+
|
186 |
+
|
187 |
+
model_cfg = dict(
|
188 |
+
type='MMDetPLer',
|
189 |
+
hyperparameters=dict(
|
190 |
+
optimizer=optimizer,
|
191 |
+
param_scheduler=param_scheduler,
|
192 |
+
evaluator=evaluator,
|
193 |
+
),
|
194 |
+
whole_model=model,
|
195 |
+
)
|
196 |
+
|
197 |
+
task_name = 'nwpu_ins'
|
198 |
+
exp_name = 'E20230604_4'
|
199 |
+
logger = dict(
|
200 |
+
type='WandbLogger',
|
201 |
+
project=task_name,
|
202 |
+
group='mask2former',
|
203 |
+
name=exp_name
|
204 |
+
)
|
205 |
+
# logger = None
|
206 |
+
|
207 |
+
|
208 |
+
callbacks = [
|
209 |
+
param_scheduler_callback,
|
210 |
+
dict(
|
211 |
+
type='ModelCheckpoint',
|
212 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
213 |
+
save_last=True,
|
214 |
+
mode='max',
|
215 |
+
monitor='valsegm_map_0',
|
216 |
+
save_top_k=2,
|
217 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
218 |
+
),
|
219 |
+
dict(
|
220 |
+
type='LearningRateMonitor',
|
221 |
+
logging_interval='step'
|
222 |
+
)
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
trainer_cfg = dict(
|
227 |
+
compiled_model=False,
|
228 |
+
accelerator="auto",
|
229 |
+
strategy="auto",
|
230 |
+
# strategy="ddp",
|
231 |
+
# strategy='ddp_find_unused_parameters_true',
|
232 |
+
# precision='32',
|
233 |
+
# precision='16-mixed',
|
234 |
+
devices=8,
|
235 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
236 |
+
# default_root_dir='results/tmp',
|
237 |
+
max_epochs=max_epochs,
|
238 |
+
logger=logger,
|
239 |
+
callbacks=callbacks,
|
240 |
+
log_every_n_steps=5,
|
241 |
+
check_val_every_n_epoch=5,
|
242 |
+
benchmark=True,
|
243 |
+
# sync_batchnorm=True,
|
244 |
+
# fast_dev_run=True,
|
245 |
+
|
246 |
+
# limit_train_batches=1,
|
247 |
+
# limit_val_batches=0,
|
248 |
+
# limit_test_batches=None,
|
249 |
+
# limit_predict_batches=None,
|
250 |
+
# overfit_batches=0.0,
|
251 |
+
|
252 |
+
# val_check_interval=None,
|
253 |
+
# num_sanity_val_steps=0,
|
254 |
+
# enable_checkpointing=None,
|
255 |
+
# enable_progress_bar=None,
|
256 |
+
# enable_model_summary=None,
|
257 |
+
# accumulate_grad_batches=32,
|
258 |
+
# gradient_clip_val=15,
|
259 |
+
# gradient_clip_algorithm='norm',
|
260 |
+
# deterministic=None,
|
261 |
+
# inference_mode: bool=True,
|
262 |
+
use_distributed_sampler=True,
|
263 |
+
# profiler="simple",
|
264 |
+
# detect_anomaly=False,
|
265 |
+
# barebones=False,
|
266 |
+
# plugins=None,
|
267 |
+
# reload_dataloaders_every_n_epochs=0,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
backend_args = None
|
272 |
+
train_pipeline = [
|
273 |
+
dict(type='mmdet.LoadImageFromFile'),
|
274 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
275 |
+
dict(type='mmdet.Resize', scale=image_size),
|
276 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
277 |
+
dict(type='mmdet.PackDetInputs')
|
278 |
+
]
|
279 |
+
|
280 |
+
test_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
282 |
+
dict(type='mmdet.Resize', scale=image_size),
|
283 |
+
# If you don't have a gt annotation, delete the pipeline
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(
|
286 |
+
type='mmdet.PackDetInputs',
|
287 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
288 |
+
'scale_factor'))
|
289 |
+
]
|
290 |
+
|
291 |
+
|
292 |
+
train_batch_size_per_gpu = 8
|
293 |
+
train_num_workers = 4
|
294 |
+
test_batch_size_per_gpu = 8
|
295 |
+
test_num_workers = 4
|
296 |
+
persistent_workers = True
|
297 |
+
|
298 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
299 |
+
train_data_prefix = ''
|
300 |
+
val_data_prefix = ''
|
301 |
+
|
302 |
+
dataset_type = 'NWPUInsSegDataset'
|
303 |
+
|
304 |
+
val_loader = dict(
|
305 |
+
batch_size=test_batch_size_per_gpu,
|
306 |
+
num_workers=test_num_workers,
|
307 |
+
persistent_workers=persistent_workers,
|
308 |
+
pin_memory=True,
|
309 |
+
dataset=dict(
|
310 |
+
type=dataset_type,
|
311 |
+
data_root=data_parent,
|
312 |
+
ann_file='NWPU_instances_val.json',
|
313 |
+
data_prefix=dict(img_path='positive image set'),
|
314 |
+
test_mode=True,
|
315 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
316 |
+
pipeline=test_pipeline,
|
317 |
+
backend_args=backend_args))
|
318 |
+
|
319 |
+
datamodule_cfg = dict(
|
320 |
+
type='PLDataModule',
|
321 |
+
train_loader=dict(
|
322 |
+
batch_size=train_batch_size_per_gpu,
|
323 |
+
num_workers=train_num_workers,
|
324 |
+
persistent_workers=persistent_workers,
|
325 |
+
pin_memory=True,
|
326 |
+
dataset=dict(
|
327 |
+
type=dataset_type,
|
328 |
+
data_root=data_parent,
|
329 |
+
ann_file='NWPU_instances_train.json',
|
330 |
+
data_prefix=dict(img_path='positive image set'),
|
331 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
332 |
+
pipeline=train_pipeline,
|
333 |
+
backend_args=backend_args)
|
334 |
+
),
|
335 |
+
val_loader=val_loader,
|
336 |
+
test_loader=val_loader,
|
337 |
+
predict_loader=val_loader
|
338 |
+
)
|
configs/rsprompter/mask2former_ssdd_config.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
max_epochs = 600
|
4 |
+
|
5 |
+
optimizer = dict(
|
6 |
+
type='AdamW',
|
7 |
+
lr=0.0005,
|
8 |
+
weight_decay=1e-3
|
9 |
+
)
|
10 |
+
|
11 |
+
param_scheduler = [
|
12 |
+
# warm up learning rate scheduler
|
13 |
+
dict(
|
14 |
+
type='LinearLR',
|
15 |
+
start_factor=1e-4,
|
16 |
+
by_epoch=True,
|
17 |
+
begin=0,
|
18 |
+
end=1,
|
19 |
+
# update by iter
|
20 |
+
convert_to_iter_based=True),
|
21 |
+
# main learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='CosineAnnealingLR',
|
24 |
+
T_max=max_epochs,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=1,
|
27 |
+
end=max_epochs,
|
28 |
+
)
|
29 |
+
]
|
30 |
+
|
31 |
+
param_scheduler_callback = dict(
|
32 |
+
type='ParamSchedulerHook'
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
evaluator_ = dict(
|
37 |
+
type='CocoPLMetric',
|
38 |
+
metric=['bbox', 'segm'],
|
39 |
+
proposal_nums=[1, 10, 100]
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
evaluator = dict(
|
44 |
+
# train_evaluator=evaluator_,
|
45 |
+
val_evaluator=evaluator_,
|
46 |
+
test_evaluator=evaluator_,
|
47 |
+
)
|
48 |
+
|
49 |
+
image_size = (512, 512)
|
50 |
+
data_preprocessor = dict(
|
51 |
+
type='mmdet.DetDataPreprocessor',
|
52 |
+
mean=[123.675, 116.28, 103.53],
|
53 |
+
std=[58.395, 57.12, 57.375],
|
54 |
+
bgr_to_rgb=True,
|
55 |
+
pad_size_divisor=32,
|
56 |
+
pad_mask=True,
|
57 |
+
mask_pad_value=0,
|
58 |
+
)
|
59 |
+
|
60 |
+
num_things_classes = 1
|
61 |
+
num_stuff_classes = 0
|
62 |
+
num_classes = num_things_classes + num_stuff_classes
|
63 |
+
num_queries = 30
|
64 |
+
|
65 |
+
model = dict(
|
66 |
+
type='mmdet.Mask2Former',
|
67 |
+
data_preprocessor=data_preprocessor,
|
68 |
+
backbone=dict(
|
69 |
+
type='mmdet.ResNet',
|
70 |
+
depth=50,
|
71 |
+
num_stages=4,
|
72 |
+
out_indices=(0, 1, 2, 3),
|
73 |
+
frozen_stages=-1,
|
74 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
75 |
+
norm_eval=True,
|
76 |
+
style='pytorch',
|
77 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
78 |
+
panoptic_head=dict(
|
79 |
+
type='mmdet.Mask2FormerHead',
|
80 |
+
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
|
81 |
+
strides=[4, 8, 16, 32],
|
82 |
+
feat_channels=256,
|
83 |
+
out_channels=256,
|
84 |
+
num_things_classes=num_things_classes,
|
85 |
+
num_stuff_classes=num_stuff_classes,
|
86 |
+
num_queries=num_queries,
|
87 |
+
num_transformer_feat_level=3,
|
88 |
+
pixel_decoder=dict(
|
89 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
90 |
+
num_outs=3,
|
91 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
92 |
+
act_cfg=dict(type='ReLU'),
|
93 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
94 |
+
num_layers=3,
|
95 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
96 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
97 |
+
embed_dims=256,
|
98 |
+
num_heads=8,
|
99 |
+
num_levels=3,
|
100 |
+
num_points=4,
|
101 |
+
dropout=0.0,
|
102 |
+
batch_first=True),
|
103 |
+
ffn_cfg=dict(
|
104 |
+
embed_dims=256,
|
105 |
+
feedforward_channels=1024,
|
106 |
+
num_fcs=2,
|
107 |
+
ffn_drop=0.0,
|
108 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
109 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
110 |
+
enforce_decoder_input_project=False,
|
111 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
112 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
113 |
+
return_intermediate=True,
|
114 |
+
num_layers=3,
|
115 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
116 |
+
self_attn_cfg=dict( # MultiheadAttention
|
117 |
+
embed_dims=256,
|
118 |
+
num_heads=8,
|
119 |
+
dropout=0.0,
|
120 |
+
batch_first=True),
|
121 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
122 |
+
embed_dims=256,
|
123 |
+
num_heads=8,
|
124 |
+
dropout=0.0,
|
125 |
+
batch_first=True),
|
126 |
+
ffn_cfg=dict(
|
127 |
+
embed_dims=256,
|
128 |
+
feedforward_channels=2048,
|
129 |
+
num_fcs=2,
|
130 |
+
ffn_drop=0.0,
|
131 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
132 |
+
init_cfg=None),
|
133 |
+
loss_cls=dict(
|
134 |
+
type='mmdet.CrossEntropyLoss',
|
135 |
+
use_sigmoid=False,
|
136 |
+
loss_weight=2.0,
|
137 |
+
reduction='mean',
|
138 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
139 |
+
loss_mask=dict(
|
140 |
+
type='mmdet.CrossEntropyLoss',
|
141 |
+
use_sigmoid=True,
|
142 |
+
reduction='mean',
|
143 |
+
loss_weight=5.0),
|
144 |
+
loss_dice=dict(
|
145 |
+
type='mmdet.DiceLoss',
|
146 |
+
use_sigmoid=True,
|
147 |
+
activate=True,
|
148 |
+
reduction='mean',
|
149 |
+
naive_dice=True,
|
150 |
+
eps=1.0,
|
151 |
+
loss_weight=5.0)),
|
152 |
+
panoptic_fusion_head=dict(
|
153 |
+
type='mmdet.MaskFormerFusionHead',
|
154 |
+
num_things_classes=num_things_classes,
|
155 |
+
num_stuff_classes=num_stuff_classes,
|
156 |
+
loss_panoptic=None,
|
157 |
+
init_cfg=None),
|
158 |
+
train_cfg=dict(
|
159 |
+
num_points=12544,
|
160 |
+
oversample_ratio=3.0,
|
161 |
+
importance_sample_ratio=0.75,
|
162 |
+
assigner=dict(
|
163 |
+
type='mmdet.HungarianAssigner',
|
164 |
+
match_costs=[
|
165 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
166 |
+
dict(
|
167 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
168 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
169 |
+
]),
|
170 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
171 |
+
test_cfg=dict(
|
172 |
+
panoptic_on=False,
|
173 |
+
# For now, the dataset does not support
|
174 |
+
# evaluating semantic segmentation metric.
|
175 |
+
semantic_on=False,
|
176 |
+
instance_on=True,
|
177 |
+
# max_per_image is for instance segmentation.
|
178 |
+
max_per_image=num_queries,
|
179 |
+
iou_thr=0.8,
|
180 |
+
# In Mask2Former's panoptic postprocessing,
|
181 |
+
# it will filter mask area where score is less than 0.5 .
|
182 |
+
filter_low_score=True),
|
183 |
+
init_cfg=None)
|
184 |
+
|
185 |
+
|
186 |
+
model_cfg = dict(
|
187 |
+
type='MMDetPLer',
|
188 |
+
hyperparameters=dict(
|
189 |
+
optimizer=optimizer,
|
190 |
+
param_scheduler=param_scheduler,
|
191 |
+
evaluator=evaluator,
|
192 |
+
),
|
193 |
+
whole_model=model,
|
194 |
+
)
|
195 |
+
|
196 |
+
task_name = 'ssdd_ins'
|
197 |
+
exp_name = 'E20230527_0'
|
198 |
+
logger = dict(
|
199 |
+
type='WandbLogger',
|
200 |
+
project=task_name,
|
201 |
+
group='mask2former',
|
202 |
+
name=exp_name
|
203 |
+
)
|
204 |
+
# logger = None
|
205 |
+
|
206 |
+
|
207 |
+
callbacks = [
|
208 |
+
param_scheduler_callback,
|
209 |
+
dict(
|
210 |
+
type='ModelCheckpoint',
|
211 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
212 |
+
save_last=True,
|
213 |
+
mode='max',
|
214 |
+
monitor='valsegm_map_0',
|
215 |
+
save_top_k=2,
|
216 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
217 |
+
),
|
218 |
+
dict(
|
219 |
+
type='LearningRateMonitor',
|
220 |
+
logging_interval='step'
|
221 |
+
)
|
222 |
+
]
|
223 |
+
|
224 |
+
|
225 |
+
trainer_cfg = dict(
|
226 |
+
compiled_model=False,
|
227 |
+
accelerator="auto",
|
228 |
+
strategy="auto",
|
229 |
+
# strategy="ddp",
|
230 |
+
# strategy='ddp_find_unused_parameters_true',
|
231 |
+
# precision='32',
|
232 |
+
# precision='16-mixed',
|
233 |
+
devices=4,
|
234 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
235 |
+
# default_root_dir='results/tmp',
|
236 |
+
max_epochs=max_epochs,
|
237 |
+
logger=logger,
|
238 |
+
callbacks=callbacks,
|
239 |
+
log_every_n_steps=10,
|
240 |
+
check_val_every_n_epoch=10,
|
241 |
+
benchmark=True,
|
242 |
+
# sync_batchnorm=True,
|
243 |
+
# fast_dev_run=True,
|
244 |
+
|
245 |
+
# limit_train_batches=1,
|
246 |
+
# limit_val_batches=0,
|
247 |
+
# limit_test_batches=None,
|
248 |
+
# limit_predict_batches=None,
|
249 |
+
# overfit_batches=0.0,
|
250 |
+
|
251 |
+
# val_check_interval=None,
|
252 |
+
# num_sanity_val_steps=0,
|
253 |
+
# enable_checkpointing=None,
|
254 |
+
# enable_progress_bar=None,
|
255 |
+
# enable_model_summary=None,
|
256 |
+
# accumulate_grad_batches=32,
|
257 |
+
# gradient_clip_val=15,
|
258 |
+
# gradient_clip_algorithm='norm',
|
259 |
+
# deterministic=None,
|
260 |
+
# inference_mode: bool=True,
|
261 |
+
use_distributed_sampler=True,
|
262 |
+
# profiler="simple",
|
263 |
+
# detect_anomaly=False,
|
264 |
+
# barebones=False,
|
265 |
+
# plugins=None,
|
266 |
+
# reload_dataloaders_every_n_epochs=0,
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
backend_args = None
|
271 |
+
train_pipeline = [
|
272 |
+
dict(type='mmdet.LoadImageFromFile'),
|
273 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
274 |
+
dict(type='mmdet.Resize', scale=image_size),
|
275 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
276 |
+
dict(type='mmdet.PackDetInputs')
|
277 |
+
]
|
278 |
+
|
279 |
+
test_pipeline = [
|
280 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
281 |
+
dict(type='mmdet.Resize', scale=image_size),
|
282 |
+
# If you don't have a gt annotation, delete the pipeline
|
283 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
284 |
+
dict(
|
285 |
+
type='mmdet.PackDetInputs',
|
286 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
287 |
+
'scale_factor'))
|
288 |
+
]
|
289 |
+
|
290 |
+
|
291 |
+
train_batch_size_per_gpu = 8
|
292 |
+
train_num_workers = 4
|
293 |
+
test_batch_size_per_gpu = 8
|
294 |
+
test_num_workers = 4
|
295 |
+
persistent_workers = True
|
296 |
+
|
297 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
298 |
+
|
299 |
+
dataset_type = 'SSDDInsSegDataset'
|
300 |
+
|
301 |
+
val_loader = dict(
|
302 |
+
batch_size=test_batch_size_per_gpu,
|
303 |
+
num_workers=test_num_workers,
|
304 |
+
persistent_workers=persistent_workers,
|
305 |
+
pin_memory=True,
|
306 |
+
dataset=dict(
|
307 |
+
type=dataset_type,
|
308 |
+
data_root=data_parent,
|
309 |
+
ann_file='annotations/SSDD_instances_val.json',
|
310 |
+
data_prefix=dict(img_path='imgs'),
|
311 |
+
test_mode=True,
|
312 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
313 |
+
pipeline=test_pipeline,
|
314 |
+
backend_args=backend_args))
|
315 |
+
|
316 |
+
datamodule_cfg = dict(
|
317 |
+
type='PLDataModule',
|
318 |
+
train_loader=dict(
|
319 |
+
batch_size=train_batch_size_per_gpu,
|
320 |
+
num_workers=train_num_workers,
|
321 |
+
persistent_workers=persistent_workers,
|
322 |
+
pin_memory=True,
|
323 |
+
dataset=dict(
|
324 |
+
type=dataset_type,
|
325 |
+
data_root=data_parent,
|
326 |
+
ann_file='annotations/SSDD_instances_train.json',
|
327 |
+
data_prefix=dict(img_path='imgs'),
|
328 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
329 |
+
pipeline=train_pipeline,
|
330 |
+
backend_args=backend_args)
|
331 |
+
),
|
332 |
+
val_loader=val_loader,
|
333 |
+
test_loader=val_loader,
|
334 |
+
predict_loader=val_loader
|
335 |
+
)
|
configs/rsprompter/mask2former_whu_config.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
max_epochs = 400
|
4 |
+
|
5 |
+
optimizer = dict(
|
6 |
+
type='AdamW',
|
7 |
+
lr=0.0005,
|
8 |
+
weight_decay=1e-3
|
9 |
+
)
|
10 |
+
|
11 |
+
param_scheduler = [
|
12 |
+
# warm up learning rate scheduler
|
13 |
+
dict(
|
14 |
+
type='LinearLR',
|
15 |
+
start_factor=1e-4,
|
16 |
+
by_epoch=True,
|
17 |
+
begin=0,
|
18 |
+
end=1,
|
19 |
+
# update by iter
|
20 |
+
convert_to_iter_based=True),
|
21 |
+
# main learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='CosineAnnealingLR',
|
24 |
+
T_max=max_epochs,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=1,
|
27 |
+
end=max_epochs,
|
28 |
+
)
|
29 |
+
]
|
30 |
+
|
31 |
+
param_scheduler_callback = dict(
|
32 |
+
type='ParamSchedulerHook'
|
33 |
+
)
|
34 |
+
|
35 |
+
evaluator_ = dict(
|
36 |
+
type='CocoPLMetric',
|
37 |
+
metric=['bbox', 'segm'],
|
38 |
+
proposal_nums=[1, 10, 100],
|
39 |
+
)
|
40 |
+
|
41 |
+
evaluator = dict(
|
42 |
+
val_evaluator=evaluator_,
|
43 |
+
test_evaluator=evaluator_,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
image_size = (512, 512)
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_size_divisor=32,
|
54 |
+
pad_mask=True,
|
55 |
+
mask_pad_value=0,
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 1
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
num_queries = 90
|
62 |
+
|
63 |
+
model = dict(
|
64 |
+
type='mmdet.Mask2Former',
|
65 |
+
data_preprocessor=data_preprocessor,
|
66 |
+
backbone=dict(
|
67 |
+
type='mmdet.ResNet',
|
68 |
+
depth=50,
|
69 |
+
num_stages=4,
|
70 |
+
out_indices=(0, 1, 2, 3),
|
71 |
+
frozen_stages=-1,
|
72 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
73 |
+
norm_eval=True,
|
74 |
+
style='pytorch',
|
75 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
76 |
+
panoptic_head=dict(
|
77 |
+
type='mmdet.Mask2FormerHead',
|
78 |
+
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
|
79 |
+
strides=[4, 8, 16, 32],
|
80 |
+
feat_channels=256,
|
81 |
+
out_channels=256,
|
82 |
+
num_things_classes=num_things_classes,
|
83 |
+
num_stuff_classes=num_stuff_classes,
|
84 |
+
num_queries=num_queries,
|
85 |
+
num_transformer_feat_level=3,
|
86 |
+
pixel_decoder=dict(
|
87 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
88 |
+
num_outs=3,
|
89 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
90 |
+
act_cfg=dict(type='ReLU'),
|
91 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
92 |
+
num_layers=3,
|
93 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
94 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
95 |
+
embed_dims=256,
|
96 |
+
num_heads=8,
|
97 |
+
num_levels=3,
|
98 |
+
num_points=4,
|
99 |
+
dropout=0.0,
|
100 |
+
batch_first=True),
|
101 |
+
ffn_cfg=dict(
|
102 |
+
embed_dims=256,
|
103 |
+
feedforward_channels=1024,
|
104 |
+
num_fcs=2,
|
105 |
+
ffn_drop=0.0,
|
106 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
107 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
108 |
+
enforce_decoder_input_project=False,
|
109 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
110 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
111 |
+
return_intermediate=True,
|
112 |
+
num_layers=3,
|
113 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
114 |
+
self_attn_cfg=dict( # MultiheadAttention
|
115 |
+
embed_dims=256,
|
116 |
+
num_heads=8,
|
117 |
+
dropout=0.0,
|
118 |
+
batch_first=True),
|
119 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
120 |
+
embed_dims=256,
|
121 |
+
num_heads=8,
|
122 |
+
dropout=0.0,
|
123 |
+
batch_first=True),
|
124 |
+
ffn_cfg=dict(
|
125 |
+
embed_dims=256,
|
126 |
+
feedforward_channels=2048,
|
127 |
+
num_fcs=2,
|
128 |
+
ffn_drop=0.0,
|
129 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
130 |
+
init_cfg=None),
|
131 |
+
loss_cls=dict(
|
132 |
+
type='mmdet.CrossEntropyLoss',
|
133 |
+
use_sigmoid=False,
|
134 |
+
loss_weight=2.0,
|
135 |
+
reduction='mean',
|
136 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
137 |
+
loss_mask=dict(
|
138 |
+
type='mmdet.CrossEntropyLoss',
|
139 |
+
use_sigmoid=True,
|
140 |
+
reduction='mean',
|
141 |
+
loss_weight=5.0),
|
142 |
+
loss_dice=dict(
|
143 |
+
type='mmdet.DiceLoss',
|
144 |
+
use_sigmoid=True,
|
145 |
+
activate=True,
|
146 |
+
reduction='mean',
|
147 |
+
naive_dice=True,
|
148 |
+
eps=1.0,
|
149 |
+
loss_weight=5.0)),
|
150 |
+
panoptic_fusion_head=dict(
|
151 |
+
type='mmdet.MaskFormerFusionHead',
|
152 |
+
num_things_classes=num_things_classes,
|
153 |
+
num_stuff_classes=num_stuff_classes,
|
154 |
+
loss_panoptic=None,
|
155 |
+
init_cfg=None),
|
156 |
+
train_cfg=dict(
|
157 |
+
num_points=12544,
|
158 |
+
oversample_ratio=3.0,
|
159 |
+
importance_sample_ratio=0.75,
|
160 |
+
assigner=dict(
|
161 |
+
type='mmdet.HungarianAssigner',
|
162 |
+
match_costs=[
|
163 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
164 |
+
dict(
|
165 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
166 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
167 |
+
]),
|
168 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
169 |
+
test_cfg=dict(
|
170 |
+
panoptic_on=False,
|
171 |
+
# For now, the dataset does not support
|
172 |
+
# evaluating semantic segmentation metric.
|
173 |
+
semantic_on=False,
|
174 |
+
instance_on=True,
|
175 |
+
# max_per_image is for instance segmentation.
|
176 |
+
max_per_image=100,
|
177 |
+
iou_thr=0.8,
|
178 |
+
# In Mask2Former's panoptic postprocessing,
|
179 |
+
# it will filter mask area where score is less than 0.5 .
|
180 |
+
filter_low_score=True),
|
181 |
+
init_cfg=None)
|
182 |
+
|
183 |
+
|
184 |
+
model_cfg = dict(
|
185 |
+
type='MMDetPLer',
|
186 |
+
hyperparameters=dict(
|
187 |
+
optimizer=optimizer,
|
188 |
+
param_scheduler=param_scheduler,
|
189 |
+
evaluator=evaluator,
|
190 |
+
),
|
191 |
+
whole_model=model,
|
192 |
+
)
|
193 |
+
|
194 |
+
task_name = 'whu_ins'
|
195 |
+
exp_name = 'E20230525_1'
|
196 |
+
logger = dict(
|
197 |
+
type='WandbLogger',
|
198 |
+
project=task_name,
|
199 |
+
group='mask2former',
|
200 |
+
name=exp_name
|
201 |
+
)
|
202 |
+
# logger = None
|
203 |
+
|
204 |
+
|
205 |
+
callbacks = [
|
206 |
+
param_scheduler_callback,
|
207 |
+
dict(
|
208 |
+
type='ModelCheckpoint',
|
209 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
210 |
+
save_last=True,
|
211 |
+
mode='max',
|
212 |
+
monitor='valmap_0',
|
213 |
+
save_top_k=2,
|
214 |
+
filename='epoch_{epoch}-map_{valmap_0:.4f}'
|
215 |
+
),
|
216 |
+
dict(
|
217 |
+
type='LearningRateMonitor',
|
218 |
+
logging_interval='step'
|
219 |
+
)
|
220 |
+
]
|
221 |
+
|
222 |
+
|
223 |
+
trainer_cfg = dict(
|
224 |
+
compiled_model=False,
|
225 |
+
accelerator="auto",
|
226 |
+
strategy="auto",
|
227 |
+
# strategy="ddp",
|
228 |
+
# strategy='ddp_find_unused_parameters_true',
|
229 |
+
# precision='32',
|
230 |
+
# precision='16-mixed',
|
231 |
+
devices=4,
|
232 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
233 |
+
# default_root_dir='results/tmp',
|
234 |
+
max_epochs=max_epochs,
|
235 |
+
logger=logger,
|
236 |
+
callbacks=callbacks,
|
237 |
+
log_every_n_steps=20,
|
238 |
+
check_val_every_n_epoch=10,
|
239 |
+
benchmark=True,
|
240 |
+
# sync_batchnorm=True,
|
241 |
+
# fast_dev_run=True,
|
242 |
+
|
243 |
+
# limit_train_batches=1,
|
244 |
+
# limit_val_batches=0,
|
245 |
+
# limit_test_batches=None,
|
246 |
+
# limit_predict_batches=None,
|
247 |
+
# overfit_batches=0.0,
|
248 |
+
|
249 |
+
# val_check_interval=None,
|
250 |
+
# num_sanity_val_steps=0,
|
251 |
+
# enable_checkpointing=None,
|
252 |
+
# enable_progress_bar=None,
|
253 |
+
# enable_model_summary=None,
|
254 |
+
# accumulate_grad_batches=32,
|
255 |
+
# gradient_clip_val=15,
|
256 |
+
# gradient_clip_algorithm='norm',
|
257 |
+
# deterministic=None,
|
258 |
+
# inference_mode: bool=True,
|
259 |
+
use_distributed_sampler=True,
|
260 |
+
# profiler="simple",
|
261 |
+
# detect_anomaly=False,
|
262 |
+
# barebones=False,
|
263 |
+
# plugins=None,
|
264 |
+
# reload_dataloaders_every_n_epochs=0,
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
backend_args = None
|
269 |
+
train_pipeline = [
|
270 |
+
dict(type='mmdet.LoadImageFromFile'),
|
271 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
272 |
+
dict(type='mmdet.Resize', scale=image_size),
|
273 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
274 |
+
dict(type='mmdet.PackDetInputs')
|
275 |
+
]
|
276 |
+
|
277 |
+
test_pipeline = [
|
278 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
279 |
+
dict(type='mmdet.Resize', scale=image_size),
|
280 |
+
# If you don't have a gt annotation, delete the pipeline
|
281 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
282 |
+
dict(
|
283 |
+
type='mmdet.PackDetInputs',
|
284 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
285 |
+
'scale_factor'))
|
286 |
+
]
|
287 |
+
|
288 |
+
|
289 |
+
train_batch_size_per_gpu = 8
|
290 |
+
train_num_workers = 4
|
291 |
+
test_batch_size_per_gpu = 8
|
292 |
+
test_num_workers = 4
|
293 |
+
persistent_workers = True
|
294 |
+
|
295 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
296 |
+
train_data_prefix = 'train/'
|
297 |
+
val_data_prefix = 'test/'
|
298 |
+
|
299 |
+
dataset_type = 'WHUInsSegDataset'
|
300 |
+
|
301 |
+
val_loader = dict(
|
302 |
+
batch_size=test_batch_size_per_gpu,
|
303 |
+
num_workers=test_num_workers,
|
304 |
+
persistent_workers=persistent_workers,
|
305 |
+
pin_memory=True,
|
306 |
+
dataset=dict(
|
307 |
+
type=dataset_type,
|
308 |
+
data_root=data_parent,
|
309 |
+
ann_file='annotations/WHU_building_test.json',
|
310 |
+
data_prefix=dict(img_path=val_data_prefix + '/image', seg_path=val_data_prefix + '/label'),
|
311 |
+
test_mode=True,
|
312 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
313 |
+
pipeline=test_pipeline,
|
314 |
+
backend_args=backend_args))
|
315 |
+
|
316 |
+
datamodule_cfg = dict(
|
317 |
+
type='PLDataModule',
|
318 |
+
train_loader=dict(
|
319 |
+
batch_size=train_batch_size_per_gpu,
|
320 |
+
num_workers=train_num_workers,
|
321 |
+
persistent_workers=persistent_workers,
|
322 |
+
pin_memory=True,
|
323 |
+
dataset=dict(
|
324 |
+
type=dataset_type,
|
325 |
+
data_root=data_parent,
|
326 |
+
ann_file='annotations/WHU_building_train.json',
|
327 |
+
data_prefix=dict(img_path=train_data_prefix + '/image', seg_path=train_data_prefix + '/label'),
|
328 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
329 |
+
pipeline=train_pipeline,
|
330 |
+
backend_args=backend_args)
|
331 |
+
),
|
332 |
+
val_loader=val_loader,
|
333 |
+
test_loader=val_loader,
|
334 |
+
predict_loader=val_loader
|
335 |
+
)
|
configs/rsprompter/maskrcnn_nwpu_config.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], allow_failed_imports=False)
|
2 |
+
max_epochs = 500
|
3 |
+
|
4 |
+
optimizer = dict(
|
5 |
+
type='AdamW',
|
6 |
+
lr=0.0005,
|
7 |
+
weight_decay=1e-4
|
8 |
+
)
|
9 |
+
|
10 |
+
param_scheduler = [
|
11 |
+
# warm up learning rate scheduler
|
12 |
+
dict(
|
13 |
+
type='LinearLR',
|
14 |
+
start_factor=1e-4,
|
15 |
+
by_epoch=True,
|
16 |
+
begin=0,
|
17 |
+
end=1,
|
18 |
+
# update by iter
|
19 |
+
convert_to_iter_based=True),
|
20 |
+
# main learning rate scheduler
|
21 |
+
dict(
|
22 |
+
type='CosineAnnealingLR',
|
23 |
+
T_max=max_epochs,
|
24 |
+
by_epoch=True,
|
25 |
+
begin=1,
|
26 |
+
end=max_epochs,
|
27 |
+
)
|
28 |
+
]
|
29 |
+
|
30 |
+
param_scheduler_callback = dict(
|
31 |
+
type='ParamSchedulerHook'
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
evaluator_ = dict(
|
36 |
+
type='CocoPLMetric',
|
37 |
+
metric=['bbox', 'segm'],
|
38 |
+
proposal_nums=[1, 10, 100]
|
39 |
+
)
|
40 |
+
|
41 |
+
evaluator = dict(
|
42 |
+
val_evaluator=evaluator_,
|
43 |
+
test_evaluator=evaluator_
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
image_size = (1024, 1024)
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_mask=True,
|
54 |
+
mask_pad_value=0,
|
55 |
+
pad_size_divisor=32
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 10
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
|
62 |
+
# model settings
|
63 |
+
model = dict(
|
64 |
+
type='mmdet.MaskRCNN',
|
65 |
+
data_preprocessor=data_preprocessor,
|
66 |
+
backbone=dict(
|
67 |
+
type='mmdet.ResNet',
|
68 |
+
depth=50,
|
69 |
+
num_stages=4,
|
70 |
+
out_indices=(0, 1, 2, 3),
|
71 |
+
frozen_stages=1,
|
72 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
73 |
+
norm_eval=True,
|
74 |
+
style='pytorch',
|
75 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')
|
76 |
+
),
|
77 |
+
neck=dict(
|
78 |
+
type='mmdet.FPN',
|
79 |
+
in_channels=[256, 512, 1024, 2048],
|
80 |
+
out_channels=256,
|
81 |
+
num_outs=5),
|
82 |
+
rpn_head=dict(
|
83 |
+
type='mmdet.RPNHead',
|
84 |
+
in_channels=256,
|
85 |
+
feat_channels=256,
|
86 |
+
anchor_generator=dict(
|
87 |
+
type='mmdet.AnchorGenerator',
|
88 |
+
scales=[8],
|
89 |
+
ratios=[0.5, 1.0, 2.0],
|
90 |
+
strides=[4, 8, 16, 32, 64]),
|
91 |
+
bbox_coder=dict(
|
92 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
93 |
+
target_means=[.0, .0, .0, .0],
|
94 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
95 |
+
loss_cls=dict(
|
96 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
97 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
98 |
+
roi_head=dict(
|
99 |
+
type='mmdet.StandardRoIHead',
|
100 |
+
bbox_roi_extractor=dict(
|
101 |
+
type='mmdet.SingleRoIExtractor',
|
102 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
103 |
+
out_channels=256,
|
104 |
+
featmap_strides=[4, 8, 16, 32]),
|
105 |
+
bbox_head=dict(
|
106 |
+
type='mmdet.Shared2FCBBoxHead',
|
107 |
+
in_channels=256,
|
108 |
+
fc_out_channels=1024,
|
109 |
+
roi_feat_size=7,
|
110 |
+
num_classes=num_classes,
|
111 |
+
bbox_coder=dict(
|
112 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
113 |
+
target_means=[0., 0., 0., 0.],
|
114 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
115 |
+
reg_class_agnostic=False,
|
116 |
+
loss_cls=dict(
|
117 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
118 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
119 |
+
mask_roi_extractor=dict(
|
120 |
+
type='mmdet.SingleRoIExtractor',
|
121 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
122 |
+
out_channels=256,
|
123 |
+
featmap_strides=[4, 8, 16, 32]),
|
124 |
+
mask_head=dict(
|
125 |
+
type='mmdet.FCNMaskHead',
|
126 |
+
num_convs=4,
|
127 |
+
in_channels=256,
|
128 |
+
conv_out_channels=256,
|
129 |
+
num_classes=num_classes,
|
130 |
+
loss_mask=dict(
|
131 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
132 |
+
# model training and testing settings
|
133 |
+
train_cfg=dict(
|
134 |
+
rpn=dict(
|
135 |
+
assigner=dict(
|
136 |
+
type='mmdet.MaxIoUAssigner',
|
137 |
+
pos_iou_thr=0.7,
|
138 |
+
neg_iou_thr=0.3,
|
139 |
+
min_pos_iou=0.3,
|
140 |
+
match_low_quality=True,
|
141 |
+
ignore_iof_thr=-1),
|
142 |
+
sampler=dict(
|
143 |
+
type='mmdet.RandomSampler',
|
144 |
+
num=256,
|
145 |
+
pos_fraction=0.5,
|
146 |
+
neg_pos_ub=-1,
|
147 |
+
add_gt_as_proposals=False),
|
148 |
+
allowed_border=-1,
|
149 |
+
pos_weight=-1,
|
150 |
+
debug=False),
|
151 |
+
rpn_proposal=dict(
|
152 |
+
nms_pre=2000,
|
153 |
+
max_per_img=1000,
|
154 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
155 |
+
min_bbox_size=0),
|
156 |
+
rcnn=dict(
|
157 |
+
assigner=dict(
|
158 |
+
type='mmdet.MaxIoUAssigner',
|
159 |
+
pos_iou_thr=0.5,
|
160 |
+
neg_iou_thr=0.5,
|
161 |
+
min_pos_iou=0.5,
|
162 |
+
match_low_quality=True,
|
163 |
+
ignore_iof_thr=-1),
|
164 |
+
sampler=dict(
|
165 |
+
type='mmdet.RandomSampler',
|
166 |
+
num=512,
|
167 |
+
pos_fraction=0.25,
|
168 |
+
neg_pos_ub=-1,
|
169 |
+
add_gt_as_proposals=True),
|
170 |
+
mask_size=28,
|
171 |
+
pos_weight=-1,
|
172 |
+
debug=False)),
|
173 |
+
test_cfg=dict(
|
174 |
+
rpn=dict(
|
175 |
+
nms_pre=1000,
|
176 |
+
max_per_img=1000,
|
177 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
178 |
+
min_bbox_size=0),
|
179 |
+
rcnn=dict(
|
180 |
+
score_thr=0.05,
|
181 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
182 |
+
max_per_img=100,
|
183 |
+
mask_thr_binary=0.5)
|
184 |
+
)
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
model_cfg = dict(
|
189 |
+
type='MMDetPLer',
|
190 |
+
hyperparameters=dict(
|
191 |
+
optimizer=optimizer,
|
192 |
+
param_scheduler=param_scheduler,
|
193 |
+
evaluator=evaluator,
|
194 |
+
),
|
195 |
+
whole_model=model,
|
196 |
+
)
|
197 |
+
|
198 |
+
task_name = 'nwpu_ins'
|
199 |
+
exp_name = 'E20230520_0'
|
200 |
+
logger = dict(
|
201 |
+
type='WandbLogger',
|
202 |
+
project=task_name,
|
203 |
+
group='maskrcnn',
|
204 |
+
name=exp_name
|
205 |
+
)
|
206 |
+
# logger = None
|
207 |
+
|
208 |
+
|
209 |
+
callbacks = [
|
210 |
+
param_scheduler_callback,
|
211 |
+
dict(
|
212 |
+
type='ModelCheckpoint',
|
213 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
214 |
+
save_last=True,
|
215 |
+
mode='max',
|
216 |
+
monitor='valmap_0',
|
217 |
+
save_top_k=2,
|
218 |
+
filename='epoch_{epoch}-map_{valmap_0:.4f}'
|
219 |
+
),
|
220 |
+
dict(
|
221 |
+
type='LearningRateMonitor',
|
222 |
+
logging_interval='step'
|
223 |
+
)
|
224 |
+
]
|
225 |
+
|
226 |
+
|
227 |
+
trainer_cfg = dict(
|
228 |
+
compiled_model=False,
|
229 |
+
accelerator="cpu",
|
230 |
+
strategy="auto",
|
231 |
+
# strategy="ddp",
|
232 |
+
# strategy='ddp_find_unused_parameters_true',
|
233 |
+
# precision='32',
|
234 |
+
# precision='16-mixed',
|
235 |
+
devices=1,
|
236 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
237 |
+
# default_root_dir='results/tmp',
|
238 |
+
max_epochs=max_epochs,
|
239 |
+
logger=logger,
|
240 |
+
callbacks=callbacks,
|
241 |
+
log_every_n_steps=3,
|
242 |
+
check_val_every_n_epoch=5,
|
243 |
+
benchmark=True,
|
244 |
+
# sync_batchnorm=True,
|
245 |
+
# fast_dev_run=True,
|
246 |
+
|
247 |
+
# limit_train_batches=1,
|
248 |
+
# limit_val_batches=0,
|
249 |
+
# limit_test_batches=None,
|
250 |
+
# limit_predict_batches=None,
|
251 |
+
# overfit_batches=0.0,
|
252 |
+
|
253 |
+
# val_check_interval=None,
|
254 |
+
# num_sanity_val_steps=0,
|
255 |
+
# enable_checkpointing=None,
|
256 |
+
# enable_progress_bar=None,
|
257 |
+
# enable_model_summary=None,
|
258 |
+
# accumulate_grad_batches=32,
|
259 |
+
# gradient_clip_val=15,
|
260 |
+
# gradient_clip_algorithm='norm',
|
261 |
+
# deterministic=None,
|
262 |
+
# inference_mode: bool=True,
|
263 |
+
use_distributed_sampler=True,
|
264 |
+
# profiler="simple",
|
265 |
+
# detect_anomaly=False,
|
266 |
+
# barebones=False,
|
267 |
+
# plugins=None,
|
268 |
+
# reload_dataloaders_every_n_epochs=0,
|
269 |
+
)
|
270 |
+
|
271 |
+
|
272 |
+
backend_args = None
|
273 |
+
train_pipeline = [
|
274 |
+
dict(type='mmdet.LoadImageFromFile'),
|
275 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
276 |
+
dict(type='mmdet.Resize', scale=image_size),
|
277 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
278 |
+
dict(type='mmdet.PackDetInputs')
|
279 |
+
]
|
280 |
+
|
281 |
+
test_pipeline = [
|
282 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
283 |
+
dict(type='mmdet.Resize', scale=image_size),
|
284 |
+
# If you don't have a gt annotation, delete the pipeline
|
285 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
286 |
+
dict(
|
287 |
+
type='mmdet.PackDetInputs',
|
288 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
289 |
+
'scale_factor'))
|
290 |
+
]
|
291 |
+
|
292 |
+
|
293 |
+
train_batch_size_per_gpu = 2
|
294 |
+
train_num_workers = 4
|
295 |
+
test_batch_size_per_gpu = 2
|
296 |
+
test_num_workers = 4
|
297 |
+
persistent_workers = True
|
298 |
+
|
299 |
+
data_parent = '/Users/kyanchen/datasets/seg/VHR-10_dataset_coco/NWPUVHR-10_dataset/'
|
300 |
+
train_data_prefix = ''
|
301 |
+
val_data_prefix = ''
|
302 |
+
|
303 |
+
dataset_type = 'NWPUInsSegDataset'
|
304 |
+
|
305 |
+
val_loader = dict(
|
306 |
+
batch_size=test_batch_size_per_gpu,
|
307 |
+
num_workers=test_num_workers,
|
308 |
+
persistent_workers=persistent_workers,
|
309 |
+
pin_memory=True,
|
310 |
+
dataset=dict(
|
311 |
+
type=dataset_type,
|
312 |
+
data_root=data_parent,
|
313 |
+
ann_file='NWPU_instances_val.json',
|
314 |
+
data_prefix=dict(img_path='positive image set'),
|
315 |
+
test_mode=True,
|
316 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
317 |
+
pipeline=test_pipeline,
|
318 |
+
backend_args=backend_args))
|
319 |
+
|
320 |
+
datamodule_cfg = dict(
|
321 |
+
type='PLDataModule',
|
322 |
+
train_loader=dict(
|
323 |
+
batch_size=train_batch_size_per_gpu,
|
324 |
+
num_workers=train_num_workers,
|
325 |
+
persistent_workers=persistent_workers,
|
326 |
+
pin_memory=True,
|
327 |
+
dataset=dict(
|
328 |
+
type=dataset_type,
|
329 |
+
data_root=data_parent,
|
330 |
+
ann_file='NWPU_instances_train.json',
|
331 |
+
data_prefix=dict(img_path='positive image set'),
|
332 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
333 |
+
pipeline=train_pipeline,
|
334 |
+
backend_args=backend_args)
|
335 |
+
),
|
336 |
+
val_loader=val_loader,
|
337 |
+
test_loader=val_loader,
|
338 |
+
predict_loader=val_loader
|
339 |
+
)
|
configs/rsprompter/maskrcnn_ssdd_config.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
max_epochs = 500
|
4 |
+
|
5 |
+
optimizer = dict(
|
6 |
+
type='AdamW',
|
7 |
+
lr=0.0005,
|
8 |
+
weight_decay=1e-4
|
9 |
+
)
|
10 |
+
|
11 |
+
param_scheduler = [
|
12 |
+
# warm up learning rate scheduler
|
13 |
+
dict(
|
14 |
+
type='LinearLR',
|
15 |
+
start_factor=1e-4,
|
16 |
+
by_epoch=True,
|
17 |
+
begin=0,
|
18 |
+
end=1,
|
19 |
+
# update by iter
|
20 |
+
convert_to_iter_based=True),
|
21 |
+
# main learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='CosineAnnealingLR',
|
24 |
+
T_max=max_epochs,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=1,
|
27 |
+
end=max_epochs,
|
28 |
+
)
|
29 |
+
]
|
30 |
+
|
31 |
+
param_scheduler_callback = dict(
|
32 |
+
type='ParamSchedulerHook'
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
evaluator_ = dict(
|
37 |
+
type='CocoPLMetric',
|
38 |
+
metric=['bbox', 'segm'],
|
39 |
+
proposal_nums=[1, 10, 100]
|
40 |
+
)
|
41 |
+
|
42 |
+
evaluator = dict(
|
43 |
+
val_evaluator=evaluator_,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
image_size = (512, 512)
|
48 |
+
data_preprocessor = dict(
|
49 |
+
type='mmdet.DetDataPreprocessor',
|
50 |
+
mean=[123.675, 116.28, 103.53],
|
51 |
+
std=[58.395, 57.12, 57.375],
|
52 |
+
bgr_to_rgb=True,
|
53 |
+
pad_mask=True,
|
54 |
+
mask_pad_value=0,
|
55 |
+
pad_size_divisor=32
|
56 |
+
)
|
57 |
+
|
58 |
+
num_things_classes = 1
|
59 |
+
num_stuff_classes = 0
|
60 |
+
num_classes = num_things_classes + num_stuff_classes
|
61 |
+
num_queries = 100
|
62 |
+
|
63 |
+
# model settings
|
64 |
+
model = dict(
|
65 |
+
type='mmdet.MaskRCNN',
|
66 |
+
data_preprocessor=data_preprocessor,
|
67 |
+
backbone=dict(
|
68 |
+
type='mmdet.ResNet',
|
69 |
+
depth=50,
|
70 |
+
num_stages=4,
|
71 |
+
out_indices=(0, 1, 2, 3),
|
72 |
+
frozen_stages=-1,
|
73 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
74 |
+
norm_eval=True,
|
75 |
+
style='pytorch',
|
76 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')
|
77 |
+
),
|
78 |
+
neck=dict(
|
79 |
+
type='mmdet.FPN',
|
80 |
+
in_channels=[256, 512, 1024, 2048],
|
81 |
+
out_channels=256,
|
82 |
+
num_outs=5),
|
83 |
+
rpn_head=dict(
|
84 |
+
type='mmdet.RPNHead',
|
85 |
+
in_channels=256,
|
86 |
+
feat_channels=256,
|
87 |
+
anchor_generator=dict(
|
88 |
+
type='mmdet.AnchorGenerator',
|
89 |
+
scales=[8],
|
90 |
+
ratios=[0.5, 1.0, 2.0],
|
91 |
+
strides=[4, 8, 16, 32, 64]),
|
92 |
+
bbox_coder=dict(
|
93 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
94 |
+
target_means=[.0, .0, .0, .0],
|
95 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
96 |
+
loss_cls=dict(
|
97 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
98 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
99 |
+
roi_head=dict(
|
100 |
+
type='mmdet.StandardRoIHead',
|
101 |
+
bbox_roi_extractor=dict(
|
102 |
+
type='mmdet.SingleRoIExtractor',
|
103 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
104 |
+
out_channels=256,
|
105 |
+
featmap_strides=[4, 8, 16, 32]),
|
106 |
+
bbox_head=dict(
|
107 |
+
type='mmdet.Shared2FCBBoxHead',
|
108 |
+
in_channels=256,
|
109 |
+
fc_out_channels=1024,
|
110 |
+
roi_feat_size=7,
|
111 |
+
num_classes=num_classes,
|
112 |
+
bbox_coder=dict(
|
113 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
114 |
+
target_means=[0., 0., 0., 0.],
|
115 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
116 |
+
reg_class_agnostic=False,
|
117 |
+
loss_cls=dict(
|
118 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
119 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
120 |
+
mask_roi_extractor=dict(
|
121 |
+
type='mmdet.SingleRoIExtractor',
|
122 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
123 |
+
out_channels=256,
|
124 |
+
featmap_strides=[4, 8, 16, 32]),
|
125 |
+
mask_head=dict(
|
126 |
+
type='mmdet.FCNMaskHead',
|
127 |
+
num_convs=4,
|
128 |
+
in_channels=256,
|
129 |
+
conv_out_channels=256,
|
130 |
+
num_classes=num_classes,
|
131 |
+
loss_mask=dict(
|
132 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
133 |
+
# model training and testing settings
|
134 |
+
train_cfg=dict(
|
135 |
+
rpn=dict(
|
136 |
+
assigner=dict(
|
137 |
+
type='mmdet.MaxIoUAssigner',
|
138 |
+
pos_iou_thr=0.7,
|
139 |
+
neg_iou_thr=0.3,
|
140 |
+
min_pos_iou=0.3,
|
141 |
+
match_low_quality=True,
|
142 |
+
ignore_iof_thr=-1),
|
143 |
+
sampler=dict(
|
144 |
+
type='mmdet.RandomSampler',
|
145 |
+
num=256,
|
146 |
+
pos_fraction=0.5,
|
147 |
+
neg_pos_ub=-1,
|
148 |
+
add_gt_as_proposals=False),
|
149 |
+
allowed_border=-1,
|
150 |
+
pos_weight=-1,
|
151 |
+
debug=False),
|
152 |
+
rpn_proposal=dict(
|
153 |
+
nms_pre=2000,
|
154 |
+
max_per_img=1000,
|
155 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
156 |
+
min_bbox_size=0),
|
157 |
+
rcnn=dict(
|
158 |
+
assigner=dict(
|
159 |
+
type='mmdet.MaxIoUAssigner',
|
160 |
+
pos_iou_thr=0.5,
|
161 |
+
neg_iou_thr=0.5,
|
162 |
+
min_pos_iou=0.5,
|
163 |
+
match_low_quality=True,
|
164 |
+
ignore_iof_thr=-1),
|
165 |
+
sampler=dict(
|
166 |
+
type='mmdet.RandomSampler',
|
167 |
+
num=512,
|
168 |
+
pos_fraction=0.25,
|
169 |
+
neg_pos_ub=-1,
|
170 |
+
add_gt_as_proposals=True),
|
171 |
+
mask_size=28,
|
172 |
+
pos_weight=-1,
|
173 |
+
debug=False)),
|
174 |
+
test_cfg=dict(
|
175 |
+
rpn=dict(
|
176 |
+
nms_pre=1000,
|
177 |
+
max_per_img=1000,
|
178 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
179 |
+
min_bbox_size=0),
|
180 |
+
rcnn=dict(
|
181 |
+
score_thr=0.05,
|
182 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
183 |
+
max_per_img=100,
|
184 |
+
mask_thr_binary=0.5)
|
185 |
+
)
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
model_cfg = dict(
|
190 |
+
type='MMDetPLer',
|
191 |
+
hyperparameters=dict(
|
192 |
+
optimizer=optimizer,
|
193 |
+
param_scheduler=param_scheduler,
|
194 |
+
evaluator=evaluator,
|
195 |
+
),
|
196 |
+
whole_model=model,
|
197 |
+
)
|
198 |
+
|
199 |
+
task_name = 'ssdd_ins'
|
200 |
+
exp_name = 'E20230526_0'
|
201 |
+
logger = dict(
|
202 |
+
type='WandbLogger',
|
203 |
+
project=task_name,
|
204 |
+
group='maskrcnn',
|
205 |
+
name=exp_name
|
206 |
+
)
|
207 |
+
# logger = None
|
208 |
+
|
209 |
+
|
210 |
+
callbacks = [
|
211 |
+
param_scheduler_callback,
|
212 |
+
dict(
|
213 |
+
type='ModelCheckpoint',
|
214 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
215 |
+
save_last=True,
|
216 |
+
mode='max',
|
217 |
+
monitor='valmap_0',
|
218 |
+
save_top_k=2,
|
219 |
+
filename='epoch_{epoch}-map_{valmap_0:.4f}'
|
220 |
+
# mode='min',
|
221 |
+
# monitor='train_loss',
|
222 |
+
# save_top_k=2,
|
223 |
+
# filename='epoch_{epoch}-trainloss_{train_loss:.4f}'
|
224 |
+
),
|
225 |
+
dict(
|
226 |
+
type='LearningRateMonitor',
|
227 |
+
logging_interval='step'
|
228 |
+
)
|
229 |
+
]
|
230 |
+
|
231 |
+
|
232 |
+
trainer_cfg = dict(
|
233 |
+
compiled_model=False,
|
234 |
+
accelerator="auto",
|
235 |
+
strategy="auto",
|
236 |
+
# strategy="ddp",
|
237 |
+
# strategy='ddp_find_unused_parameters_true',
|
238 |
+
# precision='32',
|
239 |
+
# precision='16-mixed',
|
240 |
+
devices=4,
|
241 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
242 |
+
# default_root_dir='results/tmp',
|
243 |
+
max_epochs=max_epochs,
|
244 |
+
logger=logger,
|
245 |
+
callbacks=callbacks,
|
246 |
+
log_every_n_steps=10,
|
247 |
+
check_val_every_n_epoch=10,
|
248 |
+
benchmark=True,
|
249 |
+
# sync_batchnorm=True,
|
250 |
+
# fast_dev_run=True,
|
251 |
+
|
252 |
+
# limit_train_batches=1,
|
253 |
+
# limit_val_batches=0,
|
254 |
+
# limit_test_batches=None,
|
255 |
+
# limit_predict_batches=None,
|
256 |
+
# overfit_batches=0.0,
|
257 |
+
|
258 |
+
# val_check_interval=None,
|
259 |
+
# num_sanity_val_steps=1,
|
260 |
+
# enable_checkpointing=None,
|
261 |
+
# enable_progress_bar=None,
|
262 |
+
# enable_model_summary=None,
|
263 |
+
# accumulate_grad_batches=32,
|
264 |
+
# gradient_clip_val=15,
|
265 |
+
# gradient_clip_algorithm='norm',
|
266 |
+
# deterministic=None,
|
267 |
+
# inference_mode: bool=True,
|
268 |
+
use_distributed_sampler=True,
|
269 |
+
# profiler="simple",
|
270 |
+
# detect_anomaly=False,
|
271 |
+
# barebones=False,
|
272 |
+
# plugins=None,
|
273 |
+
# reload_dataloaders_every_n_epochs=0,
|
274 |
+
)
|
275 |
+
|
276 |
+
|
277 |
+
backend_args = None
|
278 |
+
train_pipeline = [
|
279 |
+
dict(type='mmdet.LoadImageFromFile'),
|
280 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
281 |
+
dict(type='mmdet.Resize', scale=image_size),
|
282 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
283 |
+
dict(type='mmdet.PackDetInputs')
|
284 |
+
]
|
285 |
+
|
286 |
+
test_pipeline = [
|
287 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
288 |
+
dict(type='mmdet.Resize', scale=image_size),
|
289 |
+
# If you don't have a gt annotation, delete the pipeline
|
290 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
291 |
+
dict(
|
292 |
+
type='mmdet.PackDetInputs',
|
293 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
294 |
+
'scale_factor'))
|
295 |
+
]
|
296 |
+
|
297 |
+
|
298 |
+
train_batch_size_per_gpu = 8
|
299 |
+
train_num_workers = 4
|
300 |
+
test_batch_size_per_gpu = 8
|
301 |
+
test_num_workers = 4
|
302 |
+
persistent_workers = True
|
303 |
+
|
304 |
+
data_parent = '/Users/kyanchen/datasets/seg/SSDD'
|
305 |
+
# data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
306 |
+
|
307 |
+
dataset_type = 'SSDDInsSegDataset'
|
308 |
+
|
309 |
+
val_loader = dict(
|
310 |
+
batch_size=test_batch_size_per_gpu,
|
311 |
+
num_workers=test_num_workers,
|
312 |
+
persistent_workers=persistent_workers,
|
313 |
+
pin_memory=True,
|
314 |
+
dataset=dict(
|
315 |
+
type=dataset_type,
|
316 |
+
data_root=data_parent,
|
317 |
+
ann_file='annotations/SSDD_instances_val.json',
|
318 |
+
data_prefix=dict(img_path='imgs'),
|
319 |
+
test_mode=True,
|
320 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
321 |
+
pipeline=test_pipeline,
|
322 |
+
backend_args=backend_args
|
323 |
+
)
|
324 |
+
)
|
325 |
+
|
326 |
+
datamodule_cfg = dict(
|
327 |
+
type='PLDataModule',
|
328 |
+
train_loader=dict(
|
329 |
+
batch_size=train_batch_size_per_gpu,
|
330 |
+
num_workers=train_num_workers,
|
331 |
+
persistent_workers=persistent_workers,
|
332 |
+
pin_memory=True,
|
333 |
+
dataset=dict(
|
334 |
+
type=dataset_type,
|
335 |
+
data_root=data_parent,
|
336 |
+
ann_file='annotations/SSDD_instances_train.json',
|
337 |
+
data_prefix=dict(img_path='imgs'),
|
338 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
339 |
+
pipeline=train_pipeline,
|
340 |
+
backend_args=backend_args)
|
341 |
+
),
|
342 |
+
val_loader=val_loader,
|
343 |
+
test_loader=val_loader,
|
344 |
+
predict_loader=val_loader
|
345 |
+
)
|
configs/rsprompter/maskrcnn_whu_config.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
max_epochs = 150
|
4 |
+
|
5 |
+
optimizer = dict(
|
6 |
+
type='AdamW',
|
7 |
+
lr=0.0005,
|
8 |
+
weight_decay=1e-4
|
9 |
+
)
|
10 |
+
|
11 |
+
param_scheduler = [
|
12 |
+
# warm up learning rate scheduler
|
13 |
+
dict(
|
14 |
+
type='LinearLR',
|
15 |
+
start_factor=1e-4,
|
16 |
+
by_epoch=True,
|
17 |
+
begin=0,
|
18 |
+
end=1,
|
19 |
+
# update by iter
|
20 |
+
convert_to_iter_based=True),
|
21 |
+
# main learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='CosineAnnealingLR',
|
24 |
+
T_max=max_epochs,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=1,
|
27 |
+
end=max_epochs,
|
28 |
+
)
|
29 |
+
]
|
30 |
+
|
31 |
+
param_scheduler_callback = dict(
|
32 |
+
type='ParamSchedulerHook'
|
33 |
+
)
|
34 |
+
|
35 |
+
evaluator_ = dict(
|
36 |
+
type='MeanAveragePrecision',
|
37 |
+
# iou_type='segm',
|
38 |
+
iou_type='bbox',
|
39 |
+
# dist_sync_on_step=True,
|
40 |
+
# compute_on_cpu=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
evaluator_ = dict(
|
44 |
+
type='CocoPLMetric',
|
45 |
+
metric=['bbox', 'segm'],
|
46 |
+
proposal_nums=[1, 10, 100]
|
47 |
+
)
|
48 |
+
|
49 |
+
evaluator = dict(
|
50 |
+
val_evaluator=evaluator_,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
image_size = (512, 512)
|
55 |
+
data_preprocessor = dict(
|
56 |
+
type='mmdet.DetDataPreprocessor',
|
57 |
+
mean=[123.675, 116.28, 103.53],
|
58 |
+
std=[58.395, 57.12, 57.375],
|
59 |
+
bgr_to_rgb=True,
|
60 |
+
pad_mask=True,
|
61 |
+
mask_pad_value=0,
|
62 |
+
pad_size_divisor=32
|
63 |
+
)
|
64 |
+
|
65 |
+
num_things_classes = 1
|
66 |
+
num_stuff_classes = 0
|
67 |
+
num_classes = num_things_classes + num_stuff_classes
|
68 |
+
num_queries = 90
|
69 |
+
|
70 |
+
# model settings
|
71 |
+
model = dict(
|
72 |
+
type='mmdet.MaskRCNN',
|
73 |
+
data_preprocessor=data_preprocessor,
|
74 |
+
backbone=dict(
|
75 |
+
type='mmdet.ResNet',
|
76 |
+
depth=50,
|
77 |
+
num_stages=4,
|
78 |
+
out_indices=(0, 1, 2, 3),
|
79 |
+
frozen_stages=-1,
|
80 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
81 |
+
norm_eval=True,
|
82 |
+
style='pytorch',
|
83 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')
|
84 |
+
),
|
85 |
+
neck=dict(
|
86 |
+
type='mmdet.FPN',
|
87 |
+
in_channels=[256, 512, 1024, 2048],
|
88 |
+
out_channels=256,
|
89 |
+
num_outs=5),
|
90 |
+
rpn_head=dict(
|
91 |
+
type='mmdet.RPNHead',
|
92 |
+
in_channels=256,
|
93 |
+
feat_channels=256,
|
94 |
+
anchor_generator=dict(
|
95 |
+
type='mmdet.AnchorGenerator',
|
96 |
+
scales=[8],
|
97 |
+
ratios=[0.5, 1.0, 2.0],
|
98 |
+
strides=[4, 8, 16, 32, 64]),
|
99 |
+
bbox_coder=dict(
|
100 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
101 |
+
target_means=[.0, .0, .0, .0],
|
102 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
103 |
+
loss_cls=dict(
|
104 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
105 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
106 |
+
roi_head=dict(
|
107 |
+
type='mmdet.StandardRoIHead',
|
108 |
+
bbox_roi_extractor=dict(
|
109 |
+
type='mmdet.SingleRoIExtractor',
|
110 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
111 |
+
out_channels=256,
|
112 |
+
featmap_strides=[4, 8, 16, 32]),
|
113 |
+
bbox_head=dict(
|
114 |
+
type='mmdet.Shared2FCBBoxHead',
|
115 |
+
in_channels=256,
|
116 |
+
fc_out_channels=1024,
|
117 |
+
roi_feat_size=7,
|
118 |
+
num_classes=num_classes,
|
119 |
+
bbox_coder=dict(
|
120 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
121 |
+
target_means=[0., 0., 0., 0.],
|
122 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
123 |
+
reg_class_agnostic=False,
|
124 |
+
loss_cls=dict(
|
125 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
126 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
127 |
+
mask_roi_extractor=dict(
|
128 |
+
type='mmdet.SingleRoIExtractor',
|
129 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
130 |
+
out_channels=256,
|
131 |
+
featmap_strides=[4, 8, 16, 32]),
|
132 |
+
mask_head=dict(
|
133 |
+
type='mmdet.FCNMaskHead',
|
134 |
+
num_convs=4,
|
135 |
+
in_channels=256,
|
136 |
+
conv_out_channels=256,
|
137 |
+
num_classes=num_classes,
|
138 |
+
loss_mask=dict(
|
139 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
140 |
+
# model training and testing settings
|
141 |
+
train_cfg=dict(
|
142 |
+
rpn=dict(
|
143 |
+
assigner=dict(
|
144 |
+
type='mmdet.MaxIoUAssigner',
|
145 |
+
pos_iou_thr=0.7,
|
146 |
+
neg_iou_thr=0.3,
|
147 |
+
min_pos_iou=0.3,
|
148 |
+
match_low_quality=True,
|
149 |
+
ignore_iof_thr=-1),
|
150 |
+
sampler=dict(
|
151 |
+
type='mmdet.RandomSampler',
|
152 |
+
num=256,
|
153 |
+
pos_fraction=0.5,
|
154 |
+
neg_pos_ub=-1,
|
155 |
+
add_gt_as_proposals=False),
|
156 |
+
allowed_border=-1,
|
157 |
+
pos_weight=-1,
|
158 |
+
debug=False),
|
159 |
+
rpn_proposal=dict(
|
160 |
+
nms_pre=2000,
|
161 |
+
max_per_img=1000,
|
162 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
163 |
+
min_bbox_size=0),
|
164 |
+
rcnn=dict(
|
165 |
+
assigner=dict(
|
166 |
+
type='mmdet.MaxIoUAssigner',
|
167 |
+
pos_iou_thr=0.5,
|
168 |
+
neg_iou_thr=0.5,
|
169 |
+
min_pos_iou=0.5,
|
170 |
+
match_low_quality=True,
|
171 |
+
ignore_iof_thr=-1),
|
172 |
+
sampler=dict(
|
173 |
+
type='mmdet.RandomSampler',
|
174 |
+
num=512,
|
175 |
+
pos_fraction=0.25,
|
176 |
+
neg_pos_ub=-1,
|
177 |
+
add_gt_as_proposals=True),
|
178 |
+
mask_size=28,
|
179 |
+
pos_weight=-1,
|
180 |
+
debug=False)),
|
181 |
+
test_cfg=dict(
|
182 |
+
rpn=dict(
|
183 |
+
nms_pre=1000,
|
184 |
+
max_per_img=1000,
|
185 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
186 |
+
min_bbox_size=0),
|
187 |
+
rcnn=dict(
|
188 |
+
score_thr=0.05,
|
189 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
190 |
+
max_per_img=100,
|
191 |
+
mask_thr_binary=0.5)
|
192 |
+
)
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
model_cfg = dict(
|
197 |
+
type='MMDetPLer',
|
198 |
+
hyperparameters=dict(
|
199 |
+
optimizer=optimizer,
|
200 |
+
param_scheduler=param_scheduler,
|
201 |
+
evaluator=evaluator,
|
202 |
+
),
|
203 |
+
whole_model=model,
|
204 |
+
)
|
205 |
+
|
206 |
+
task_name = 'whu_ins'
|
207 |
+
exp_name = 'E20230525_0'
|
208 |
+
logger = dict(
|
209 |
+
type='WandbLogger',
|
210 |
+
project=task_name,
|
211 |
+
group='maskrcnn',
|
212 |
+
name=exp_name
|
213 |
+
)
|
214 |
+
# logger = None
|
215 |
+
|
216 |
+
|
217 |
+
callbacks = [
|
218 |
+
param_scheduler_callback,
|
219 |
+
dict(
|
220 |
+
type='ModelCheckpoint',
|
221 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
222 |
+
save_last=True,
|
223 |
+
mode='max',
|
224 |
+
monitor='valmap_0',
|
225 |
+
save_top_k=2,
|
226 |
+
filename='epoch_{epoch}-map_{valmap_0:.4f}'
|
227 |
+
),
|
228 |
+
dict(
|
229 |
+
type='LearningRateMonitor',
|
230 |
+
logging_interval='step'
|
231 |
+
)
|
232 |
+
]
|
233 |
+
|
234 |
+
|
235 |
+
trainer_cfg = dict(
|
236 |
+
compiled_model=False,
|
237 |
+
accelerator="auto",
|
238 |
+
strategy="auto",
|
239 |
+
# strategy="ddp",
|
240 |
+
# strategy='ddp_find_unused_parameters_true',
|
241 |
+
# precision='32',
|
242 |
+
# precision='16-mixed',
|
243 |
+
devices=4,
|
244 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
245 |
+
# default_root_dir='results/tmp',
|
246 |
+
max_epochs=max_epochs,
|
247 |
+
logger=logger,
|
248 |
+
callbacks=callbacks,
|
249 |
+
log_every_n_steps=20,
|
250 |
+
check_val_every_n_epoch=10,
|
251 |
+
benchmark=True,
|
252 |
+
# sync_batchnorm=True,
|
253 |
+
# fast_dev_run=True,
|
254 |
+
|
255 |
+
# limit_train_batches=1,
|
256 |
+
# limit_val_batches=0,
|
257 |
+
# limit_test_batches=None,
|
258 |
+
# limit_predict_batches=None,
|
259 |
+
# overfit_batches=0.0,
|
260 |
+
|
261 |
+
# val_check_interval=None,
|
262 |
+
# num_sanity_val_steps=1,
|
263 |
+
# enable_checkpointing=None,
|
264 |
+
# enable_progress_bar=None,
|
265 |
+
# enable_model_summary=None,
|
266 |
+
# accumulate_grad_batches=32,
|
267 |
+
# gradient_clip_val=15,
|
268 |
+
# gradient_clip_algorithm='norm',
|
269 |
+
# deterministic=None,
|
270 |
+
# inference_mode: bool=True,
|
271 |
+
use_distributed_sampler=True,
|
272 |
+
# profiler="simple",
|
273 |
+
# detect_anomaly=False,
|
274 |
+
# barebones=False,
|
275 |
+
# plugins=None,
|
276 |
+
# reload_dataloaders_every_n_epochs=0,
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
backend_args = None
|
281 |
+
train_pipeline = [
|
282 |
+
dict(type='mmdet.LoadImageFromFile'),
|
283 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
284 |
+
dict(type='mmdet.Resize', scale=image_size),
|
285 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
286 |
+
dict(type='mmdet.PackDetInputs')
|
287 |
+
]
|
288 |
+
|
289 |
+
test_pipeline = [
|
290 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
291 |
+
dict(type='mmdet.Resize', scale=image_size),
|
292 |
+
# If you don't have a gt annotation, delete the pipeline
|
293 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
294 |
+
dict(
|
295 |
+
type='mmdet.PackDetInputs',
|
296 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
297 |
+
'scale_factor'))
|
298 |
+
]
|
299 |
+
|
300 |
+
|
301 |
+
train_batch_size_per_gpu = 8
|
302 |
+
train_num_workers = 4
|
303 |
+
test_batch_size_per_gpu = 8
|
304 |
+
test_num_workers = 4
|
305 |
+
persistent_workers = True
|
306 |
+
|
307 |
+
data_parent = '/Users/kyanchen/datasets/Building/WHU'
|
308 |
+
train_data_prefix = 'train/'
|
309 |
+
val_data_prefix = 'test/'
|
310 |
+
|
311 |
+
dataset_type = 'WHUInsSegDataset'
|
312 |
+
|
313 |
+
val_loader = dict(
|
314 |
+
batch_size=test_batch_size_per_gpu,
|
315 |
+
num_workers=test_num_workers,
|
316 |
+
persistent_workers=persistent_workers,
|
317 |
+
pin_memory=True,
|
318 |
+
dataset=dict(
|
319 |
+
type=dataset_type,
|
320 |
+
data_root=data_parent,
|
321 |
+
ann_file='annotations/WHU_building_test.json',
|
322 |
+
data_prefix=dict(img_path=val_data_prefix+'/image', seg_path=val_data_prefix+'/label'),
|
323 |
+
test_mode=True,
|
324 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
325 |
+
pipeline=test_pipeline,
|
326 |
+
backend_args=backend_args,
|
327 |
+
)
|
328 |
+
)
|
329 |
+
|
330 |
+
datamodule_cfg = dict(
|
331 |
+
type='PLDataModule',
|
332 |
+
train_loader=dict(
|
333 |
+
batch_size=train_batch_size_per_gpu,
|
334 |
+
num_workers=train_num_workers,
|
335 |
+
persistent_workers=persistent_workers,
|
336 |
+
pin_memory=True,
|
337 |
+
dataset=dict(
|
338 |
+
type=dataset_type,
|
339 |
+
data_root=data_parent,
|
340 |
+
ann_file='annotations/WHU_building_train.json',
|
341 |
+
data_prefix=dict(img_path=train_data_prefix+'/image', seg_path=train_data_prefix+'/label'),
|
342 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
343 |
+
pipeline=train_pipeline,
|
344 |
+
backend_args=backend_args)
|
345 |
+
),
|
346 |
+
val_loader=val_loader,
|
347 |
+
test_loader=val_loader,
|
348 |
+
predict_loader=val_loader
|
349 |
+
)
|
configs/rsprompter/predict_rsprompter_anchor_nwpu.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(
|
2 |
+
imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'],
|
3 |
+
allow_failed_imports=False)
|
4 |
+
|
5 |
+
sub_model_train = [
|
6 |
+
'panoptic_head',
|
7 |
+
'data_preprocessor'
|
8 |
+
]
|
9 |
+
|
10 |
+
sub_model_optim = {
|
11 |
+
'panoptic_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
max_epochs = 1200
|
16 |
+
optimizer = dict(type='AdamW', lr=0.0005, weight_decay=0.0001)
|
17 |
+
param_scheduler = [
|
18 |
+
dict(
|
19 |
+
type='LinearLR',
|
20 |
+
start_factor=0.0005,
|
21 |
+
by_epoch=True,
|
22 |
+
begin=0,
|
23 |
+
end=1,
|
24 |
+
convert_to_iter_based=True),
|
25 |
+
dict(type='CosineAnnealingLR', T_max=120, by_epoch=True, begin=1, end=120)
|
26 |
+
]
|
27 |
+
|
28 |
+
param_scheduler_callback = dict(type='ParamSchedulerHook')
|
29 |
+
evaluator_ = dict(type='MeanAveragePrecision', iou_type='segm')
|
30 |
+
evaluator = dict(
|
31 |
+
val_evaluator=dict(type='MeanAveragePrecision', iou_type='segm'))
|
32 |
+
|
33 |
+
image_size = (1024, 1024)
|
34 |
+
|
35 |
+
data_preprocessor = dict(
|
36 |
+
type='mmdet.DetDataPreprocessor',
|
37 |
+
mean=[123.675, 116.28, 103.53],
|
38 |
+
std=[58.395, 57.12, 57.375],
|
39 |
+
bgr_to_rgb=True,
|
40 |
+
pad_size_divisor=32,
|
41 |
+
pad_mask=True,
|
42 |
+
mask_pad_value=0,
|
43 |
+
)
|
44 |
+
|
45 |
+
num_things_classes = 10
|
46 |
+
num_stuff_classes = 0
|
47 |
+
num_classes = num_things_classes + num_stuff_classes
|
48 |
+
prompt_shape = (60, 4)
|
49 |
+
|
50 |
+
|
51 |
+
model_cfg = dict(
|
52 |
+
type='SegSAMAnchorPLer',
|
53 |
+
hyperparameters=dict(
|
54 |
+
optimizer=optimizer,
|
55 |
+
param_scheduler=param_scheduler,
|
56 |
+
evaluator=evaluator,
|
57 |
+
),
|
58 |
+
need_train_names=sub_model_train,
|
59 |
+
data_preprocessor=data_preprocessor,
|
60 |
+
backbone=dict(
|
61 |
+
type='vit_h',
|
62 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
63 |
+
# type='vit_b',
|
64 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
65 |
+
),
|
66 |
+
panoptic_head=dict(
|
67 |
+
type='SAMAnchorInstanceHead',
|
68 |
+
neck=dict(
|
69 |
+
type='SAMAggregatorNeck',
|
70 |
+
in_channels=[1280] * 32,
|
71 |
+
# in_channels=[768] * 12,
|
72 |
+
inner_channels=32,
|
73 |
+
selected_channels=range(4, 32, 2),
|
74 |
+
# selected_channels=range(4, 12, 2),
|
75 |
+
out_channels=256,
|
76 |
+
up_sample_scale=4,
|
77 |
+
),
|
78 |
+
rpn_head=dict(
|
79 |
+
type='mmdet.RPNHead',
|
80 |
+
in_channels=256,
|
81 |
+
feat_channels=256,
|
82 |
+
anchor_generator=dict(
|
83 |
+
type='mmdet.AnchorGenerator',
|
84 |
+
scales=[2, 4, 8, 16, 32, 64],
|
85 |
+
ratios=[0.5, 1.0, 2.0],
|
86 |
+
strides=[8, 16, 32]),
|
87 |
+
bbox_coder=dict(
|
88 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
89 |
+
target_means=[.0, .0, .0, .0],
|
90 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
91 |
+
loss_cls=dict(
|
92 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
93 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
94 |
+
roi_head=dict(
|
95 |
+
type='SAMAnchorPromptRoIHead',
|
96 |
+
bbox_roi_extractor=dict(
|
97 |
+
type='mmdet.SingleRoIExtractor',
|
98 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
99 |
+
out_channels=256,
|
100 |
+
featmap_strides=[8, 16, 32]),
|
101 |
+
bbox_head=dict(
|
102 |
+
type='mmdet.Shared2FCBBoxHead',
|
103 |
+
in_channels=256,
|
104 |
+
fc_out_channels=1024,
|
105 |
+
roi_feat_size=7,
|
106 |
+
num_classes=num_classes,
|
107 |
+
bbox_coder=dict(
|
108 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
109 |
+
target_means=[0., 0., 0., 0.],
|
110 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
111 |
+
reg_class_agnostic=False,
|
112 |
+
loss_cls=dict(
|
113 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
114 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
115 |
+
mask_roi_extractor=dict(
|
116 |
+
type='mmdet.SingleRoIExtractor',
|
117 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
118 |
+
out_channels=256,
|
119 |
+
featmap_strides=[8, 16, 32]),
|
120 |
+
mask_head=dict(
|
121 |
+
type='SAMPromptMaskHead',
|
122 |
+
per_query_point=prompt_shape[1],
|
123 |
+
with_sincos=True,
|
124 |
+
class_agnostic=True,
|
125 |
+
loss_mask=dict(
|
126 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
127 |
+
# model training and testing settings
|
128 |
+
train_cfg=dict(
|
129 |
+
rpn=dict(
|
130 |
+
assigner=dict(
|
131 |
+
type='mmdet.MaxIoUAssigner',
|
132 |
+
pos_iou_thr=0.7,
|
133 |
+
neg_iou_thr=0.3,
|
134 |
+
min_pos_iou=0.3,
|
135 |
+
match_low_quality=True,
|
136 |
+
ignore_iof_thr=-1),
|
137 |
+
sampler=dict(
|
138 |
+
type='mmdet.RandomSampler',
|
139 |
+
num=512,
|
140 |
+
pos_fraction=0.5,
|
141 |
+
neg_pos_ub=-1,
|
142 |
+
add_gt_as_proposals=False),
|
143 |
+
allowed_border=-1,
|
144 |
+
pos_weight=-1,
|
145 |
+
debug=False),
|
146 |
+
rpn_proposal=dict(
|
147 |
+
nms_pre=2000,
|
148 |
+
max_per_img=1000,
|
149 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
150 |
+
min_bbox_size=0),
|
151 |
+
rcnn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.5,
|
155 |
+
neg_iou_thr=0.5,
|
156 |
+
min_pos_iou=0.5,
|
157 |
+
match_low_quality=True,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=256,
|
162 |
+
pos_fraction=0.25,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=True),
|
165 |
+
mask_size=1024,
|
166 |
+
pos_weight=-1,
|
167 |
+
debug=False)),
|
168 |
+
test_cfg=dict(
|
169 |
+
rpn=dict(
|
170 |
+
nms_pre=1000,
|
171 |
+
max_per_img=1000,
|
172 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
173 |
+
min_bbox_size=0),
|
174 |
+
rcnn=dict(
|
175 |
+
score_thr=0.05,
|
176 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
177 |
+
max_per_img=100,
|
178 |
+
mask_thr_binary=0.5)
|
179 |
+
)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
task_name = 'nwpu_ins'
|
185 |
+
exp_name = 'rsprompter_anchor_E20230601_0'
|
186 |
+
callbacks = [
|
187 |
+
dict(
|
188 |
+
type='DetVisualizationHook',
|
189 |
+
draw=True,
|
190 |
+
interval=1,
|
191 |
+
score_thr=0.1,
|
192 |
+
show=False,
|
193 |
+
wait_time=1.,
|
194 |
+
test_out_dir='visualization',
|
195 |
+
)
|
196 |
+
]
|
197 |
+
|
198 |
+
|
199 |
+
vis_backends = [dict(type='mmdet.LocalVisBackend')]
|
200 |
+
visualizer = dict(
|
201 |
+
type='mmdet.DetLocalVisualizer',
|
202 |
+
vis_backends=vis_backends,
|
203 |
+
name='visualizer',
|
204 |
+
fig_save_cfg=dict(
|
205 |
+
frameon=False,
|
206 |
+
figsize=(40, 20),
|
207 |
+
# dpi=300,
|
208 |
+
),
|
209 |
+
line_width=2,
|
210 |
+
alpha=0.8
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
trainer_cfg = dict(
|
215 |
+
compiled_model=False,
|
216 |
+
accelerator='auto',
|
217 |
+
strategy='auto',
|
218 |
+
devices=[0],
|
219 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
220 |
+
max_epochs=120,
|
221 |
+
logger=None,
|
222 |
+
callbacks=callbacks,
|
223 |
+
log_every_n_steps=20,
|
224 |
+
check_val_every_n_epoch=10,
|
225 |
+
benchmark=True,
|
226 |
+
use_distributed_sampler=True)
|
227 |
+
|
228 |
+
backend_args = None
|
229 |
+
train_pipeline = [
|
230 |
+
dict(type='mmdet.LoadImageFromFile'),
|
231 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
232 |
+
dict(type='mmdet.Resize', scale=image_size),
|
233 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
234 |
+
dict(type='mmdet.PackDetInputs')
|
235 |
+
]
|
236 |
+
|
237 |
+
test_pipeline = [
|
238 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
239 |
+
dict(type='mmdet.Resize', scale=image_size),
|
240 |
+
# If you don't have a gt annotation, delete the pipeline
|
241 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
242 |
+
dict(
|
243 |
+
type='mmdet.PackDetInputs',
|
244 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
245 |
+
'scale_factor'))
|
246 |
+
]
|
247 |
+
|
248 |
+
train_batch_size_per_gpu = 8
|
249 |
+
train_num_workers = 4
|
250 |
+
test_batch_size_per_gpu = 2
|
251 |
+
test_num_workers = 0
|
252 |
+
persistent_workers = False
|
253 |
+
|
254 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
255 |
+
train_data_prefix = ''
|
256 |
+
val_data_prefix = ''
|
257 |
+
|
258 |
+
dataset_type = 'NWPUInsSegDataset'
|
259 |
+
val_loader = dict(
|
260 |
+
batch_size=test_batch_size_per_gpu,
|
261 |
+
num_workers=test_num_workers,
|
262 |
+
persistent_workers=persistent_workers,
|
263 |
+
pin_memory=True,
|
264 |
+
dataset=dict(
|
265 |
+
type=dataset_type,
|
266 |
+
data_root=data_parent,
|
267 |
+
ann_file='NWPU_instances_val.json',
|
268 |
+
data_prefix=dict(img_path='positive image set'),
|
269 |
+
test_mode=True,
|
270 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
271 |
+
pipeline=test_pipeline,
|
272 |
+
backend_args=backend_args))
|
273 |
+
|
274 |
+
datamodule_cfg = dict(
|
275 |
+
type='PLDataModule',
|
276 |
+
predict_loader=val_loader,
|
277 |
+
)
|
configs/rsprompter/rsprompter_anchor_nwpu_config.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 1200
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 10
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
prompt_shape = (60, 4)
|
72 |
+
|
73 |
+
model_cfg = dict(
|
74 |
+
type='SegSAMAnchorPLer',
|
75 |
+
hyperparameters=dict(
|
76 |
+
optimizer=optimizer,
|
77 |
+
param_scheduler=param_scheduler,
|
78 |
+
evaluator=evaluator,
|
79 |
+
),
|
80 |
+
need_train_names=sub_model_train,
|
81 |
+
data_preprocessor=data_preprocessor,
|
82 |
+
backbone=dict(
|
83 |
+
type='vit_h',
|
84 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
85 |
+
# type='vit_b',
|
86 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
87 |
+
),
|
88 |
+
panoptic_head=dict(
|
89 |
+
type='SAMAnchorInstanceHead',
|
90 |
+
neck=dict(
|
91 |
+
type='SAMAggregatorNeck',
|
92 |
+
in_channels=[1280] * 32,
|
93 |
+
# in_channels=[768] * 12,
|
94 |
+
inner_channels=32,
|
95 |
+
selected_channels=range(8, 32, 2),
|
96 |
+
# selected_channels=range(4, 12, 2),
|
97 |
+
out_channels=256,
|
98 |
+
up_sample_scale=4,
|
99 |
+
),
|
100 |
+
rpn_head=dict(
|
101 |
+
type='mmdet.RPNHead',
|
102 |
+
in_channels=256,
|
103 |
+
feat_channels=256,
|
104 |
+
anchor_generator=dict(
|
105 |
+
type='mmdet.AnchorGenerator',
|
106 |
+
scales=[2, 4, 8, 16, 32, 64],
|
107 |
+
ratios=[0.5, 1.0, 2.0],
|
108 |
+
strides=[8, 16, 32]),
|
109 |
+
bbox_coder=dict(
|
110 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
111 |
+
target_means=[.0, .0, .0, .0],
|
112 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
113 |
+
loss_cls=dict(
|
114 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
115 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
116 |
+
roi_head=dict(
|
117 |
+
type='SAMAnchorPromptRoIHead',
|
118 |
+
bbox_roi_extractor=dict(
|
119 |
+
type='mmdet.SingleRoIExtractor',
|
120 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
121 |
+
out_channels=256,
|
122 |
+
featmap_strides=[8, 16, 32]),
|
123 |
+
bbox_head=dict(
|
124 |
+
type='mmdet.Shared2FCBBoxHead',
|
125 |
+
in_channels=256,
|
126 |
+
fc_out_channels=1024,
|
127 |
+
roi_feat_size=7,
|
128 |
+
num_classes=num_classes,
|
129 |
+
bbox_coder=dict(
|
130 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
131 |
+
target_means=[0., 0., 0., 0.],
|
132 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
133 |
+
reg_class_agnostic=False,
|
134 |
+
loss_cls=dict(
|
135 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
136 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
137 |
+
mask_roi_extractor=dict(
|
138 |
+
type='mmdet.SingleRoIExtractor',
|
139 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
140 |
+
out_channels=256,
|
141 |
+
featmap_strides=[8, 16, 32]),
|
142 |
+
mask_head=dict(
|
143 |
+
type='SAMPromptMaskHead',
|
144 |
+
per_query_point=prompt_shape[1],
|
145 |
+
with_sincos=True,
|
146 |
+
class_agnostic=True,
|
147 |
+
loss_mask=dict(
|
148 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
149 |
+
# model training and testing settings
|
150 |
+
train_cfg=dict(
|
151 |
+
rpn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.7,
|
155 |
+
neg_iou_thr=0.3,
|
156 |
+
min_pos_iou=0.3,
|
157 |
+
match_low_quality=True,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.5,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=False),
|
165 |
+
allowed_border=-1,
|
166 |
+
pos_weight=-1,
|
167 |
+
debug=False),
|
168 |
+
rpn_proposal=dict(
|
169 |
+
nms_pre=2000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
assigner=dict(
|
175 |
+
type='mmdet.MaxIoUAssigner',
|
176 |
+
pos_iou_thr=0.5,
|
177 |
+
neg_iou_thr=0.5,
|
178 |
+
min_pos_iou=0.5,
|
179 |
+
match_low_quality=True,
|
180 |
+
ignore_iof_thr=-1),
|
181 |
+
sampler=dict(
|
182 |
+
type='mmdet.RandomSampler',
|
183 |
+
num=256,
|
184 |
+
pos_fraction=0.25,
|
185 |
+
neg_pos_ub=-1,
|
186 |
+
add_gt_as_proposals=True),
|
187 |
+
mask_size=1024,
|
188 |
+
pos_weight=-1,
|
189 |
+
debug=False)),
|
190 |
+
test_cfg=dict(
|
191 |
+
rpn=dict(
|
192 |
+
nms_pre=1000,
|
193 |
+
max_per_img=1000,
|
194 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
195 |
+
min_bbox_size=0),
|
196 |
+
rcnn=dict(
|
197 |
+
score_thr=0.05,
|
198 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
199 |
+
max_per_img=100,
|
200 |
+
mask_thr_binary=0.5)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
task_name = 'nwpu_ins'
|
207 |
+
exp_name = 'E20230629_1'
|
208 |
+
logger = dict(
|
209 |
+
type='WandbLogger',
|
210 |
+
project=task_name,
|
211 |
+
group='sam-anchor',
|
212 |
+
name=exp_name
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
callbacks = [
|
217 |
+
param_scheduler_callback,
|
218 |
+
dict(
|
219 |
+
type='ModelCheckpoint',
|
220 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
221 |
+
save_last=True,
|
222 |
+
mode='max',
|
223 |
+
monitor='valsegm_map_0',
|
224 |
+
save_top_k=3,
|
225 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
226 |
+
),
|
227 |
+
dict(
|
228 |
+
type='LearningRateMonitor',
|
229 |
+
logging_interval='step'
|
230 |
+
)
|
231 |
+
]
|
232 |
+
|
233 |
+
|
234 |
+
trainer_cfg = dict(
|
235 |
+
compiled_model=False,
|
236 |
+
accelerator="auto",
|
237 |
+
strategy="auto",
|
238 |
+
# strategy="ddp",
|
239 |
+
# strategy='ddp_find_unused_parameters_true',
|
240 |
+
# precision='32',
|
241 |
+
# precision='16-mixed',
|
242 |
+
devices=8,
|
243 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
244 |
+
# default_root_dir='results/tmp',
|
245 |
+
max_epochs=max_epochs,
|
246 |
+
logger=logger,
|
247 |
+
callbacks=callbacks,
|
248 |
+
log_every_n_steps=5,
|
249 |
+
check_val_every_n_epoch=5,
|
250 |
+
benchmark=True,
|
251 |
+
# sync_batchnorm=True,
|
252 |
+
# fast_dev_run=True,
|
253 |
+
|
254 |
+
# limit_train_batches=1,
|
255 |
+
# limit_val_batches=0,
|
256 |
+
# limit_test_batches=None,
|
257 |
+
# limit_predict_batches=None,
|
258 |
+
# overfit_batches=0.0,
|
259 |
+
|
260 |
+
# val_check_interval=None,
|
261 |
+
# num_sanity_val_steps=0,
|
262 |
+
# enable_checkpointing=None,
|
263 |
+
# enable_progress_bar=None,
|
264 |
+
# enable_model_summary=None,
|
265 |
+
# accumulate_grad_batches=32,
|
266 |
+
# gradient_clip_val=15,
|
267 |
+
# gradient_clip_algorithm='norm',
|
268 |
+
# deterministic=None,
|
269 |
+
# inference_mode: bool=True,
|
270 |
+
use_distributed_sampler=True,
|
271 |
+
# profiler="simple",
|
272 |
+
# detect_anomaly=False,
|
273 |
+
# barebones=False,
|
274 |
+
# plugins=None,
|
275 |
+
# reload_dataloaders_every_n_epochs=0,
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
backend_args = None
|
280 |
+
train_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile'),
|
282 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
283 |
+
dict(type='mmdet.Resize', scale=image_size),
|
284 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
285 |
+
dict(type='mmdet.PackDetInputs')
|
286 |
+
]
|
287 |
+
|
288 |
+
test_pipeline = [
|
289 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
290 |
+
dict(type='mmdet.Resize', scale=image_size),
|
291 |
+
# If you don't have a gt annotation, delete the pipeline
|
292 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
293 |
+
dict(
|
294 |
+
type='mmdet.PackDetInputs',
|
295 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
296 |
+
'scale_factor'))
|
297 |
+
]
|
298 |
+
|
299 |
+
|
300 |
+
train_batch_size_per_gpu = 2
|
301 |
+
train_num_workers = 2
|
302 |
+
test_batch_size_per_gpu = 2
|
303 |
+
test_num_workers = 2
|
304 |
+
persistent_workers = True
|
305 |
+
|
306 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
307 |
+
train_data_prefix = ''
|
308 |
+
val_data_prefix = ''
|
309 |
+
dataset_type = 'NWPUInsSegDataset'
|
310 |
+
|
311 |
+
val_loader = dict(
|
312 |
+
batch_size=test_batch_size_per_gpu,
|
313 |
+
num_workers=test_num_workers,
|
314 |
+
persistent_workers=persistent_workers,
|
315 |
+
pin_memory=True,
|
316 |
+
dataset=dict(
|
317 |
+
type=dataset_type,
|
318 |
+
data_root=data_parent,
|
319 |
+
ann_file='NWPU_instances_val.json',
|
320 |
+
data_prefix=dict(img_path='positive image set'),
|
321 |
+
test_mode=True,
|
322 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
323 |
+
pipeline=test_pipeline,
|
324 |
+
backend_args=backend_args))
|
325 |
+
|
326 |
+
datamodule_cfg = dict(
|
327 |
+
type='PLDataModule',
|
328 |
+
train_loader=dict(
|
329 |
+
batch_size=train_batch_size_per_gpu,
|
330 |
+
num_workers=train_num_workers,
|
331 |
+
persistent_workers=persistent_workers,
|
332 |
+
pin_memory=True,
|
333 |
+
dataset=dict(
|
334 |
+
type=dataset_type,
|
335 |
+
data_root=data_parent,
|
336 |
+
ann_file='NWPU_instances_train.json',
|
337 |
+
data_prefix=dict(img_path='positive image set'),
|
338 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
339 |
+
pipeline=train_pipeline,
|
340 |
+
backend_args=backend_args)
|
341 |
+
),
|
342 |
+
val_loader=val_loader,
|
343 |
+
# test_loader=val_loader
|
344 |
+
predict_loader=val_loader
|
345 |
+
)
|
configs/rsprompter/rsprompter_anchor_ssdd_config.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 1000
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
prompt_shape = (30, 4)
|
72 |
+
|
73 |
+
model_cfg = dict(
|
74 |
+
type='SegSAMAnchorPLer',
|
75 |
+
hyperparameters=dict(
|
76 |
+
optimizer=optimizer,
|
77 |
+
param_scheduler=param_scheduler,
|
78 |
+
evaluator=evaluator,
|
79 |
+
),
|
80 |
+
need_train_names=sub_model_train,
|
81 |
+
data_preprocessor=data_preprocessor,
|
82 |
+
backbone=dict(
|
83 |
+
type='vit_h',
|
84 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
85 |
+
# type='vit_b',
|
86 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
87 |
+
),
|
88 |
+
panoptic_head=dict(
|
89 |
+
type='SAMAnchorInstanceHead',
|
90 |
+
neck=dict(
|
91 |
+
type='SAMAggregatorNeck',
|
92 |
+
in_channels=[1280] * 32,
|
93 |
+
# in_channels=[768] * 12,
|
94 |
+
inner_channels=32,
|
95 |
+
selected_channels=range(8, 32, 2),
|
96 |
+
# selected_channels=range(4, 12, 2),
|
97 |
+
out_channels=256,
|
98 |
+
up_sample_scale=4,
|
99 |
+
),
|
100 |
+
rpn_head=dict(
|
101 |
+
type='mmdet.RPNHead',
|
102 |
+
in_channels=256,
|
103 |
+
feat_channels=256,
|
104 |
+
anchor_generator=dict(
|
105 |
+
type='mmdet.AnchorGenerator',
|
106 |
+
scales=[2, 4, 8, 16, 32, 64],
|
107 |
+
ratios=[0.5, 1.0, 2.0],
|
108 |
+
strides=[8, 16, 32]),
|
109 |
+
bbox_coder=dict(
|
110 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
111 |
+
target_means=[.0, .0, .0, .0],
|
112 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
113 |
+
loss_cls=dict(
|
114 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
115 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
116 |
+
roi_head=dict(
|
117 |
+
type='SAMAnchorPromptRoIHead',
|
118 |
+
bbox_roi_extractor=dict(
|
119 |
+
type='mmdet.SingleRoIExtractor',
|
120 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
121 |
+
out_channels=256,
|
122 |
+
featmap_strides=[8, 16, 32]),
|
123 |
+
bbox_head=dict(
|
124 |
+
type='mmdet.Shared2FCBBoxHead',
|
125 |
+
in_channels=256,
|
126 |
+
fc_out_channels=1024,
|
127 |
+
roi_feat_size=7,
|
128 |
+
num_classes=num_classes,
|
129 |
+
bbox_coder=dict(
|
130 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
131 |
+
target_means=[0., 0., 0., 0.],
|
132 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
133 |
+
reg_class_agnostic=False,
|
134 |
+
loss_cls=dict(
|
135 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
136 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
137 |
+
mask_roi_extractor=dict(
|
138 |
+
type='mmdet.SingleRoIExtractor',
|
139 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
140 |
+
out_channels=256,
|
141 |
+
featmap_strides=[8, 16, 32]),
|
142 |
+
mask_head=dict(
|
143 |
+
type='SAMPromptMaskHead',
|
144 |
+
per_query_point=prompt_shape[1],
|
145 |
+
with_sincos=True,
|
146 |
+
class_agnostic=True,
|
147 |
+
loss_mask=dict(
|
148 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
149 |
+
# model training and testing settings
|
150 |
+
train_cfg=dict(
|
151 |
+
rpn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.7,
|
155 |
+
neg_iou_thr=0.3,
|
156 |
+
min_pos_iou=0.3,
|
157 |
+
match_low_quality=True,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.5,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=False),
|
165 |
+
allowed_border=-1,
|
166 |
+
pos_weight=-1,
|
167 |
+
debug=False),
|
168 |
+
rpn_proposal=dict(
|
169 |
+
nms_pre=2000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
assigner=dict(
|
175 |
+
type='mmdet.MaxIoUAssigner',
|
176 |
+
pos_iou_thr=0.5,
|
177 |
+
neg_iou_thr=0.5,
|
178 |
+
min_pos_iou=0.5,
|
179 |
+
match_low_quality=True,
|
180 |
+
ignore_iof_thr=-1),
|
181 |
+
sampler=dict(
|
182 |
+
type='mmdet.RandomSampler',
|
183 |
+
num=256,
|
184 |
+
pos_fraction=0.25,
|
185 |
+
neg_pos_ub=-1,
|
186 |
+
add_gt_as_proposals=True),
|
187 |
+
mask_size=1024,
|
188 |
+
pos_weight=-1,
|
189 |
+
debug=False)),
|
190 |
+
test_cfg=dict(
|
191 |
+
rpn=dict(
|
192 |
+
nms_pre=1000,
|
193 |
+
max_per_img=1000,
|
194 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
195 |
+
min_bbox_size=0),
|
196 |
+
rcnn=dict(
|
197 |
+
score_thr=0.05,
|
198 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
199 |
+
max_per_img=100,
|
200 |
+
mask_thr_binary=0.5)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
task_name = 'ssdd_ins'
|
206 |
+
exp_name = 'E20230629_2'
|
207 |
+
logger = dict(
|
208 |
+
type='WandbLogger',
|
209 |
+
project=task_name,
|
210 |
+
group='sam-anchor',
|
211 |
+
name=exp_name
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
callbacks = [
|
216 |
+
param_scheduler_callback,
|
217 |
+
dict(
|
218 |
+
type='ModelCheckpoint',
|
219 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
220 |
+
save_last=True,
|
221 |
+
mode='max',
|
222 |
+
monitor='valsegm_map_0',
|
223 |
+
save_top_k=3,
|
224 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
225 |
+
),
|
226 |
+
dict(
|
227 |
+
type='LearningRateMonitor',
|
228 |
+
logging_interval='step'
|
229 |
+
)
|
230 |
+
]
|
231 |
+
|
232 |
+
|
233 |
+
trainer_cfg = dict(
|
234 |
+
compiled_model=False,
|
235 |
+
accelerator="auto",
|
236 |
+
strategy="auto",
|
237 |
+
# strategy="ddp",
|
238 |
+
# strategy='ddp_find_unused_parameters_true',
|
239 |
+
# precision='32',
|
240 |
+
# precision='16-mixed',
|
241 |
+
devices=8,
|
242 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
243 |
+
# default_root_dir='results/tmp',
|
244 |
+
max_epochs=max_epochs,
|
245 |
+
logger=logger,
|
246 |
+
callbacks=callbacks,
|
247 |
+
log_every_n_steps=5,
|
248 |
+
check_val_every_n_epoch=5,
|
249 |
+
benchmark=True,
|
250 |
+
# sync_batchnorm=True,
|
251 |
+
# fast_dev_run=True,
|
252 |
+
|
253 |
+
# limit_train_batches=1,
|
254 |
+
# limit_val_batches=0,
|
255 |
+
# limit_test_batches=None,
|
256 |
+
# limit_predict_batches=None,
|
257 |
+
# overfit_batches=0.0,
|
258 |
+
|
259 |
+
# val_check_interval=None,
|
260 |
+
# num_sanity_val_steps=0,
|
261 |
+
# enable_checkpointing=None,
|
262 |
+
# enable_progress_bar=None,
|
263 |
+
# enable_model_summary=None,
|
264 |
+
# accumulate_grad_batches=32,
|
265 |
+
# gradient_clip_val=15,
|
266 |
+
# gradient_clip_algorithm='norm',
|
267 |
+
# deterministic=None,
|
268 |
+
# inference_mode: bool=True,
|
269 |
+
use_distributed_sampler=True,
|
270 |
+
# profiler="simple",
|
271 |
+
# detect_anomaly=False,
|
272 |
+
# barebones=False,
|
273 |
+
# plugins=None,
|
274 |
+
# reload_dataloaders_every_n_epochs=0,
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
+
backend_args = None
|
279 |
+
train_pipeline = [
|
280 |
+
dict(type='mmdet.LoadImageFromFile'),
|
281 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
282 |
+
dict(type='mmdet.Resize', scale=image_size),
|
283 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
284 |
+
dict(type='mmdet.PackDetInputs')
|
285 |
+
]
|
286 |
+
|
287 |
+
test_pipeline = [
|
288 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
289 |
+
dict(type='mmdet.Resize', scale=image_size),
|
290 |
+
# If you don't have a gt annotation, delete the pipeline
|
291 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
292 |
+
dict(
|
293 |
+
type='mmdet.PackDetInputs',
|
294 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
295 |
+
'scale_factor'))
|
296 |
+
]
|
297 |
+
|
298 |
+
|
299 |
+
train_batch_size_per_gpu = 2
|
300 |
+
train_num_workers = 2
|
301 |
+
test_batch_size_per_gpu = 2
|
302 |
+
test_num_workers = 2
|
303 |
+
persistent_workers = True
|
304 |
+
|
305 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
306 |
+
dataset_type = 'SSDDInsSegDataset'
|
307 |
+
|
308 |
+
|
309 |
+
val_loader = dict(
|
310 |
+
batch_size=test_batch_size_per_gpu,
|
311 |
+
num_workers=test_num_workers,
|
312 |
+
persistent_workers=persistent_workers,
|
313 |
+
pin_memory=True,
|
314 |
+
dataset=dict(
|
315 |
+
type=dataset_type,
|
316 |
+
data_root=data_parent,
|
317 |
+
# ann_file='NWPU_instances_val.json',
|
318 |
+
# data_prefix=dict(img_path='positive image set'),
|
319 |
+
ann_file='annotations/SSDD_instances_val.json',
|
320 |
+
data_prefix=dict(img_path='imgs'),
|
321 |
+
test_mode=True,
|
322 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
323 |
+
pipeline=test_pipeline,
|
324 |
+
backend_args=backend_args))
|
325 |
+
|
326 |
+
datamodule_cfg = dict(
|
327 |
+
type='PLDataModule',
|
328 |
+
train_loader=dict(
|
329 |
+
batch_size=train_batch_size_per_gpu,
|
330 |
+
num_workers=train_num_workers,
|
331 |
+
persistent_workers=persistent_workers,
|
332 |
+
pin_memory=True,
|
333 |
+
dataset=dict(
|
334 |
+
type=dataset_type,
|
335 |
+
data_root=data_parent,
|
336 |
+
# ann_file='NWPU_instances_train.json',
|
337 |
+
# data_prefix=dict(img_path='positive image set'),
|
338 |
+
ann_file='annotations/SSDD_instances_train.json',
|
339 |
+
data_prefix=dict(img_path='imgs'),
|
340 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
341 |
+
pipeline=train_pipeline,
|
342 |
+
backend_args=backend_args)
|
343 |
+
),
|
344 |
+
val_loader=val_loader,
|
345 |
+
# test_loader=val_loader
|
346 |
+
predict_loader=val_loader
|
347 |
+
)
|
configs/rsprompter/rsprompter_anchor_whu_config.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 2000
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=1e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
prompt_shape = (90, 4)
|
72 |
+
|
73 |
+
|
74 |
+
model_cfg = dict(
|
75 |
+
type='SegSAMAnchorPLer',
|
76 |
+
hyperparameters=dict(
|
77 |
+
optimizer=optimizer,
|
78 |
+
param_scheduler=param_scheduler,
|
79 |
+
evaluator=evaluator,
|
80 |
+
),
|
81 |
+
need_train_names=sub_model_train,
|
82 |
+
data_preprocessor=data_preprocessor,
|
83 |
+
backbone=dict(
|
84 |
+
type='vit_h',
|
85 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
86 |
+
# type='vit_b',
|
87 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
88 |
+
),
|
89 |
+
panoptic_head=dict(
|
90 |
+
type='SAMAnchorInstanceHead',
|
91 |
+
neck=dict(
|
92 |
+
type='SAMAggregatorNeck',
|
93 |
+
in_channels=[1280] * 32,
|
94 |
+
# in_channels=[768] * 12,
|
95 |
+
inner_channels=32,
|
96 |
+
selected_channels=range(4, 32, 2),
|
97 |
+
# selected_channels=range(4, 12, 2),
|
98 |
+
out_channels=256,
|
99 |
+
up_sample_scale=4,
|
100 |
+
),
|
101 |
+
rpn_head=dict(
|
102 |
+
type='mmdet.RPNHead',
|
103 |
+
in_channels=256,
|
104 |
+
feat_channels=256,
|
105 |
+
anchor_generator=dict(
|
106 |
+
type='mmdet.AnchorGenerator',
|
107 |
+
scales=[2, 4, 8, 16, 32, 64],
|
108 |
+
ratios=[0.5, 1.0, 2.0],
|
109 |
+
strides=[8, 16, 32]),
|
110 |
+
bbox_coder=dict(
|
111 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
112 |
+
target_means=[.0, .0, .0, .0],
|
113 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
114 |
+
loss_cls=dict(
|
115 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
116 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
117 |
+
roi_head=dict(
|
118 |
+
type='SAMAnchorPromptRoIHead',
|
119 |
+
bbox_roi_extractor=dict(
|
120 |
+
type='mmdet.SingleRoIExtractor',
|
121 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
122 |
+
out_channels=256,
|
123 |
+
featmap_strides=[8, 16, 32]),
|
124 |
+
bbox_head=dict(
|
125 |
+
type='mmdet.Shared2FCBBoxHead',
|
126 |
+
in_channels=256,
|
127 |
+
fc_out_channels=1024,
|
128 |
+
roi_feat_size=7,
|
129 |
+
num_classes=num_classes,
|
130 |
+
bbox_coder=dict(
|
131 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
132 |
+
target_means=[0., 0., 0., 0.],
|
133 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
134 |
+
reg_class_agnostic=False,
|
135 |
+
loss_cls=dict(
|
136 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
137 |
+
loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)),
|
138 |
+
mask_roi_extractor=dict(
|
139 |
+
type='mmdet.SingleRoIExtractor',
|
140 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
141 |
+
out_channels=256,
|
142 |
+
featmap_strides=[8, 16, 32]),
|
143 |
+
mask_head=dict(
|
144 |
+
type='SAMPromptMaskHead',
|
145 |
+
per_query_point=prompt_shape[1],
|
146 |
+
with_sincos=True,
|
147 |
+
class_agnostic=True,
|
148 |
+
loss_mask=dict(
|
149 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
150 |
+
# model training and testing settings
|
151 |
+
train_cfg=dict(
|
152 |
+
rpn=dict(
|
153 |
+
assigner=dict(
|
154 |
+
type='mmdet.MaxIoUAssigner',
|
155 |
+
pos_iou_thr=0.7,
|
156 |
+
neg_iou_thr=0.3,
|
157 |
+
min_pos_iou=0.3,
|
158 |
+
match_low_quality=True,
|
159 |
+
ignore_iof_thr=-1),
|
160 |
+
sampler=dict(
|
161 |
+
type='mmdet.RandomSampler',
|
162 |
+
num=512,
|
163 |
+
pos_fraction=0.5,
|
164 |
+
neg_pos_ub=-1,
|
165 |
+
add_gt_as_proposals=False),
|
166 |
+
allowed_border=-1,
|
167 |
+
pos_weight=-1,
|
168 |
+
debug=False),
|
169 |
+
rpn_proposal=dict(
|
170 |
+
nms_pre=2000,
|
171 |
+
max_per_img=1000,
|
172 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
173 |
+
min_bbox_size=0),
|
174 |
+
rcnn=dict(
|
175 |
+
assigner=dict(
|
176 |
+
type='mmdet.MaxIoUAssigner',
|
177 |
+
pos_iou_thr=0.5,
|
178 |
+
neg_iou_thr=0.5,
|
179 |
+
min_pos_iou=0.5,
|
180 |
+
match_low_quality=True,
|
181 |
+
ignore_iof_thr=-1),
|
182 |
+
sampler=dict(
|
183 |
+
type='mmdet.RandomSampler',
|
184 |
+
num=256,
|
185 |
+
pos_fraction=0.25,
|
186 |
+
neg_pos_ub=-1,
|
187 |
+
add_gt_as_proposals=True),
|
188 |
+
mask_size=1024,
|
189 |
+
pos_weight=-1,
|
190 |
+
debug=False)),
|
191 |
+
test_cfg=dict(
|
192 |
+
rpn=dict(
|
193 |
+
nms_pre=1000,
|
194 |
+
max_per_img=1000,
|
195 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
196 |
+
min_bbox_size=0),
|
197 |
+
rcnn=dict(
|
198 |
+
score_thr=0.05,
|
199 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
200 |
+
max_per_img=100,
|
201 |
+
mask_thr_binary=0.5)
|
202 |
+
)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
|
206 |
+
task_name = 'whu_ins'
|
207 |
+
exp_name = 'E20230629_0'
|
208 |
+
logger = dict(
|
209 |
+
type='WandbLogger',
|
210 |
+
project=task_name,
|
211 |
+
group='sam-anchor',
|
212 |
+
name=exp_name
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
callbacks = [
|
217 |
+
param_scheduler_callback,
|
218 |
+
dict(
|
219 |
+
type='ModelCheckpoint',
|
220 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
221 |
+
save_last=True,
|
222 |
+
mode='max',
|
223 |
+
monitor='valsegm_map_0',
|
224 |
+
save_top_k=3,
|
225 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
226 |
+
),
|
227 |
+
dict(
|
228 |
+
type='LearningRateMonitor',
|
229 |
+
logging_interval='step'
|
230 |
+
)
|
231 |
+
]
|
232 |
+
|
233 |
+
|
234 |
+
trainer_cfg = dict(
|
235 |
+
compiled_model=False,
|
236 |
+
accelerator="auto",
|
237 |
+
strategy="auto",
|
238 |
+
# strategy="ddp",
|
239 |
+
# strategy='ddp_find_unused_parameters_true',
|
240 |
+
# precision='32',
|
241 |
+
# precision='16-mixed',
|
242 |
+
devices=8,
|
243 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
244 |
+
# default_root_dir='results/tmp',
|
245 |
+
max_epochs=max_epochs,
|
246 |
+
logger=logger,
|
247 |
+
callbacks=callbacks,
|
248 |
+
log_every_n_steps=10,
|
249 |
+
check_val_every_n_epoch=5,
|
250 |
+
benchmark=True,
|
251 |
+
# sync_batchnorm=True,
|
252 |
+
# fast_dev_run=True,
|
253 |
+
|
254 |
+
# limit_train_batches=1,
|
255 |
+
# limit_val_batches=0,
|
256 |
+
# limit_test_batches=None,
|
257 |
+
# limit_predict_batches=None,
|
258 |
+
# overfit_batches=0.0,
|
259 |
+
|
260 |
+
# val_check_interval=None,
|
261 |
+
# num_sanity_val_steps=0,
|
262 |
+
# enable_checkpointing=None,
|
263 |
+
# enable_progress_bar=None,
|
264 |
+
# enable_model_summary=None,
|
265 |
+
# accumulate_grad_batches=32,
|
266 |
+
# gradient_clip_val=15,
|
267 |
+
# gradient_clip_algorithm='norm',
|
268 |
+
# deterministic=None,
|
269 |
+
# inference_mode: bool=True,
|
270 |
+
use_distributed_sampler=True,
|
271 |
+
# profiler="simple",
|
272 |
+
# detect_anomaly=False,
|
273 |
+
# barebones=False,
|
274 |
+
# plugins=None,
|
275 |
+
# reload_dataloaders_every_n_epochs=0,
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
backend_args = None
|
280 |
+
train_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile'),
|
282 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
283 |
+
dict(type='mmdet.Resize', scale=image_size),
|
284 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
285 |
+
dict(type='mmdet.PackDetInputs')
|
286 |
+
]
|
287 |
+
|
288 |
+
test_pipeline = [
|
289 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
290 |
+
dict(type='mmdet.Resize', scale=image_size),
|
291 |
+
# If you don't have a gt annotation, delete the pipeline
|
292 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
293 |
+
dict(
|
294 |
+
type='mmdet.PackDetInputs',
|
295 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
296 |
+
'scale_factor'))
|
297 |
+
]
|
298 |
+
|
299 |
+
|
300 |
+
train_batch_size_per_gpu = 2
|
301 |
+
train_num_workers = 2
|
302 |
+
test_batch_size_per_gpu = 2
|
303 |
+
test_num_workers = 2
|
304 |
+
persistent_workers = True
|
305 |
+
|
306 |
+
|
307 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
308 |
+
train_data_prefix = 'train/'
|
309 |
+
val_data_prefix = 'test/'
|
310 |
+
dataset_type = 'WHUInsSegDataset'
|
311 |
+
|
312 |
+
|
313 |
+
val_loader = dict(
|
314 |
+
batch_size=test_batch_size_per_gpu,
|
315 |
+
num_workers=test_num_workers,
|
316 |
+
persistent_workers=persistent_workers,
|
317 |
+
pin_memory=True,
|
318 |
+
dataset=dict(
|
319 |
+
type=dataset_type,
|
320 |
+
data_root=data_parent,
|
321 |
+
# ann_file='NWPU_instances_val.json',
|
322 |
+
# data_prefix=dict(img_path='positive image set'),
|
323 |
+
# ann_file='annotations/SSDD_instances_val.json',
|
324 |
+
# data_prefix=dict(img_path='imgs'),
|
325 |
+
ann_file='annotations/WHU_building_test.json',
|
326 |
+
data_prefix=dict(img_path=val_data_prefix + '/image'),
|
327 |
+
test_mode=True,
|
328 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
329 |
+
pipeline=test_pipeline,
|
330 |
+
backend_args=backend_args))
|
331 |
+
|
332 |
+
datamodule_cfg = dict(
|
333 |
+
type='PLDataModule',
|
334 |
+
train_loader=dict(
|
335 |
+
batch_size=train_batch_size_per_gpu,
|
336 |
+
num_workers=train_num_workers,
|
337 |
+
persistent_workers=persistent_workers,
|
338 |
+
pin_memory=True,
|
339 |
+
dataset=dict(
|
340 |
+
type=dataset_type,
|
341 |
+
data_root=data_parent,
|
342 |
+
# ann_file='NWPU_instances_train.json',
|
343 |
+
# data_prefix=dict(img_path='positive image set'),
|
344 |
+
# ann_file='annotations/SSDD_instances_train.json',
|
345 |
+
# data_prefix=dict(img_path='imgs'),
|
346 |
+
ann_file='annotations/WHU_building_train.json',
|
347 |
+
data_prefix=dict(img_path=train_data_prefix + '/image'),
|
348 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
349 |
+
pipeline=train_pipeline,
|
350 |
+
backend_args=backend_args)
|
351 |
+
),
|
352 |
+
val_loader=val_loader,
|
353 |
+
# test_loader=val_loader
|
354 |
+
predict_loader=val_loader
|
355 |
+
)
|
configs/rsprompter/rsprompter_query_nwpu_config.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'panoptic_fusion_head',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'panoptic_head': {'lr_mult': 1},
|
11 |
+
'panoptic_fusion_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 5000
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0005,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=1e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
evaluator_ = dict(
|
48 |
+
type='CocoPLMetric',
|
49 |
+
metric=['bbox', 'segm'],
|
50 |
+
proposal_nums=[1, 10, 100]
|
51 |
+
)
|
52 |
+
|
53 |
+
evaluator = dict(
|
54 |
+
val_evaluator=evaluator_,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
image_size = (1024, 1024)
|
59 |
+
|
60 |
+
data_preprocessor = dict(
|
61 |
+
type='mmdet.DetDataPreprocessor',
|
62 |
+
mean=[123.675, 116.28, 103.53],
|
63 |
+
std=[58.395, 57.12, 57.375],
|
64 |
+
bgr_to_rgb=True,
|
65 |
+
pad_size_divisor=32,
|
66 |
+
pad_mask=True,
|
67 |
+
mask_pad_value=0,
|
68 |
+
)
|
69 |
+
|
70 |
+
num_things_classes = 10
|
71 |
+
num_stuff_classes = 0
|
72 |
+
num_classes = num_things_classes + num_stuff_classes
|
73 |
+
prompt_shape = (60, 4)
|
74 |
+
|
75 |
+
|
76 |
+
model_cfg = dict(
|
77 |
+
type='SegSAMPLer',
|
78 |
+
hyperparameters=dict(
|
79 |
+
optimizer=optimizer,
|
80 |
+
param_scheduler=param_scheduler,
|
81 |
+
evaluator=evaluator,
|
82 |
+
),
|
83 |
+
need_train_names=sub_model_train,
|
84 |
+
data_preprocessor=data_preprocessor,
|
85 |
+
backbone=dict(
|
86 |
+
type='vit_h',
|
87 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
88 |
+
# type='vit_b',
|
89 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
90 |
+
),
|
91 |
+
panoptic_head=dict(
|
92 |
+
type='SAMInstanceHead',
|
93 |
+
num_things_classes=num_things_classes,
|
94 |
+
num_stuff_classes=num_stuff_classes,
|
95 |
+
with_multiscale=True,
|
96 |
+
with_sincos=True,
|
97 |
+
prompt_neck=dict(
|
98 |
+
type='SAMTransformerEDPromptGenNeck',
|
99 |
+
prompt_shape=prompt_shape,
|
100 |
+
in_channels=[1280] * 32,
|
101 |
+
inner_channels=32,
|
102 |
+
selected_channels=range(4, 32, 2),
|
103 |
+
# in_channels=[768] * 8,
|
104 |
+
num_encoders=1,
|
105 |
+
num_decoders=4,
|
106 |
+
out_channels=256
|
107 |
+
),
|
108 |
+
loss_cls=dict(
|
109 |
+
type='mmdet.CrossEntropyLoss',
|
110 |
+
use_sigmoid=False,
|
111 |
+
loss_weight=2.0,
|
112 |
+
reduction='mean',
|
113 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
114 |
+
loss_mask=dict(
|
115 |
+
type='mmdet.CrossEntropyLoss',
|
116 |
+
use_sigmoid=True,
|
117 |
+
reduction='mean',
|
118 |
+
loss_weight=5.0),
|
119 |
+
loss_dice=dict(
|
120 |
+
type='mmdet.DiceLoss',
|
121 |
+
use_sigmoid=True,
|
122 |
+
activate=True,
|
123 |
+
reduction='mean',
|
124 |
+
naive_dice=True,
|
125 |
+
eps=1.0,
|
126 |
+
loss_weight=5.0)),
|
127 |
+
panoptic_fusion_head=dict(
|
128 |
+
type='mmdet.MaskFormerFusionHead',
|
129 |
+
num_things_classes=num_things_classes,
|
130 |
+
num_stuff_classes=num_stuff_classes,
|
131 |
+
loss_panoptic=None,
|
132 |
+
init_cfg=None),
|
133 |
+
train_cfg=dict(
|
134 |
+
num_points=12544,
|
135 |
+
oversample_ratio=3.0,
|
136 |
+
importance_sample_ratio=0.75,
|
137 |
+
assigner=dict(
|
138 |
+
type='mmdet.HungarianAssigner',
|
139 |
+
match_costs=[
|
140 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
141 |
+
dict(
|
142 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
143 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
144 |
+
]),
|
145 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
146 |
+
test_cfg=dict(
|
147 |
+
panoptic_on=False,
|
148 |
+
# For now, the dataset does not support
|
149 |
+
# evaluating semantic segmentation metric.
|
150 |
+
semantic_on=False,
|
151 |
+
instance_on=True,
|
152 |
+
# max_per_image is for instance segmentation.
|
153 |
+
max_per_image=prompt_shape[0],
|
154 |
+
iou_thr=0.8,
|
155 |
+
# In Mask2Former's panoptic postprocessing,
|
156 |
+
# it will filter mask area where score is less than 0.5 .
|
157 |
+
filter_low_score=True),
|
158 |
+
)
|
159 |
+
|
160 |
+
task_name = 'nwpu_ins'
|
161 |
+
exp_name = 'E20230623_1'
|
162 |
+
logger = dict(
|
163 |
+
type='WandbLogger',
|
164 |
+
project=task_name,
|
165 |
+
group='sam-query',
|
166 |
+
name=exp_name
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
callbacks = [
|
171 |
+
param_scheduler_callback,
|
172 |
+
dict(
|
173 |
+
type='ModelCheckpoint',
|
174 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
175 |
+
save_last=True,
|
176 |
+
mode='max',
|
177 |
+
monitor='valsegm_map_0',
|
178 |
+
save_top_k=3,
|
179 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
180 |
+
),
|
181 |
+
dict(
|
182 |
+
type='LearningRateMonitor',
|
183 |
+
logging_interval='step'
|
184 |
+
)
|
185 |
+
]
|
186 |
+
|
187 |
+
|
188 |
+
trainer_cfg = dict(
|
189 |
+
compiled_model=False,
|
190 |
+
accelerator="auto",
|
191 |
+
strategy="auto",
|
192 |
+
# strategy="ddp",
|
193 |
+
# strategy='ddp_find_unused_parameters_true',
|
194 |
+
# precision='32',
|
195 |
+
# precision='16-mixed',
|
196 |
+
devices=8,
|
197 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
198 |
+
# default_root_dir='results/tmp',
|
199 |
+
max_epochs=max_epochs,
|
200 |
+
logger=logger,
|
201 |
+
callbacks=callbacks,
|
202 |
+
log_every_n_steps=5,
|
203 |
+
check_val_every_n_epoch=5,
|
204 |
+
benchmark=True,
|
205 |
+
# sync_batchnorm=True,
|
206 |
+
# fast_dev_run=True,
|
207 |
+
|
208 |
+
# limit_train_batches=1,
|
209 |
+
# limit_val_batches=0,
|
210 |
+
# limit_test_batches=None,
|
211 |
+
# limit_predict_batches=None,
|
212 |
+
# overfit_batches=0.0,
|
213 |
+
|
214 |
+
# val_check_interval=None,
|
215 |
+
# num_sanity_val_steps=0,
|
216 |
+
# enable_checkpointing=None,
|
217 |
+
# enable_progress_bar=None,
|
218 |
+
# enable_model_summary=None,
|
219 |
+
# accumulate_grad_batches=32,
|
220 |
+
# gradient_clip_val=15,
|
221 |
+
# gradient_clip_algorithm='norm',
|
222 |
+
# deterministic=None,
|
223 |
+
# inference_mode: bool=True,
|
224 |
+
use_distributed_sampler=True,
|
225 |
+
# profiler="simple",
|
226 |
+
# detect_anomaly=False,
|
227 |
+
# barebones=False,
|
228 |
+
# plugins=None,
|
229 |
+
# reload_dataloaders_every_n_epochs=0,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
backend_args = None
|
234 |
+
train_pipeline = [
|
235 |
+
dict(type='mmdet.LoadImageFromFile'),
|
236 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
237 |
+
dict(type='mmdet.Resize', scale=image_size),
|
238 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
239 |
+
dict(type='mmdet.PackDetInputs')
|
240 |
+
]
|
241 |
+
|
242 |
+
test_pipeline = [
|
243 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
244 |
+
dict(type='mmdet.Resize', scale=image_size),
|
245 |
+
# If you don't have a gt annotation, delete the pipeline
|
246 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
247 |
+
dict(
|
248 |
+
type='mmdet.PackDetInputs',
|
249 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
250 |
+
'scale_factor'))
|
251 |
+
]
|
252 |
+
|
253 |
+
|
254 |
+
train_batch_size_per_gpu = 3
|
255 |
+
train_num_workers = 2
|
256 |
+
test_batch_size_per_gpu = 3
|
257 |
+
test_num_workers = 2
|
258 |
+
persistent_workers = True
|
259 |
+
|
260 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
261 |
+
train_data_prefix = ''
|
262 |
+
val_data_prefix = ''
|
263 |
+
|
264 |
+
dataset_type = 'NWPUInsSegDataset'
|
265 |
+
|
266 |
+
val_loader = dict(
|
267 |
+
batch_size=test_batch_size_per_gpu,
|
268 |
+
num_workers=test_num_workers,
|
269 |
+
persistent_workers=persistent_workers,
|
270 |
+
pin_memory=True,
|
271 |
+
dataset=dict(
|
272 |
+
type=dataset_type,
|
273 |
+
data_root=data_parent,
|
274 |
+
ann_file='NWPU_instances_val.json',
|
275 |
+
data_prefix=dict(img_path='positive image set'),
|
276 |
+
test_mode=True,
|
277 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
278 |
+
pipeline=test_pipeline,
|
279 |
+
backend_args=backend_args))
|
280 |
+
|
281 |
+
datamodule_cfg = dict(
|
282 |
+
type='PLDataModule',
|
283 |
+
train_loader=dict(
|
284 |
+
batch_size=train_batch_size_per_gpu,
|
285 |
+
num_workers=train_num_workers,
|
286 |
+
persistent_workers=persistent_workers,
|
287 |
+
pin_memory=True,
|
288 |
+
dataset=dict(
|
289 |
+
type=dataset_type,
|
290 |
+
data_root=data_parent,
|
291 |
+
ann_file='NWPU_instances_train.json',
|
292 |
+
data_prefix=dict(img_path='positive image set'),
|
293 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
294 |
+
pipeline=train_pipeline,
|
295 |
+
backend_args=backend_args)
|
296 |
+
),
|
297 |
+
val_loader=val_loader,
|
298 |
+
# test_loader=val_loader
|
299 |
+
predict_loader=val_loader
|
300 |
+
)
|
configs/rsprompter/rsprompter_query_ssdd_config.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'panoptic_fusion_head',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'panoptic_head': {'lr_mult': 1},
|
11 |
+
'panoptic_fusion_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 5000
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0005,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=1e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
evaluator_ = dict(
|
48 |
+
type='CocoPLMetric',
|
49 |
+
metric=['bbox', 'segm'],
|
50 |
+
proposal_nums=[1, 10, 100]
|
51 |
+
)
|
52 |
+
|
53 |
+
evaluator = dict(
|
54 |
+
val_evaluator=evaluator_,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
image_size = (1024, 1024)
|
59 |
+
|
60 |
+
data_preprocessor = dict(
|
61 |
+
type='mmdet.DetDataPreprocessor',
|
62 |
+
mean=[123.675, 116.28, 103.53],
|
63 |
+
std=[58.395, 57.12, 57.375],
|
64 |
+
bgr_to_rgb=True,
|
65 |
+
pad_size_divisor=32,
|
66 |
+
pad_mask=True,
|
67 |
+
mask_pad_value=0,
|
68 |
+
)
|
69 |
+
|
70 |
+
num_things_classes = 1
|
71 |
+
num_stuff_classes = 0
|
72 |
+
num_classes = num_things_classes + num_stuff_classes
|
73 |
+
prompt_shape = (30, 4)
|
74 |
+
|
75 |
+
|
76 |
+
model_cfg = dict(
|
77 |
+
type='SegSAMPLer',
|
78 |
+
hyperparameters=dict(
|
79 |
+
optimizer=optimizer,
|
80 |
+
param_scheduler=param_scheduler,
|
81 |
+
evaluator=evaluator,
|
82 |
+
),
|
83 |
+
need_train_names=sub_model_train,
|
84 |
+
data_preprocessor=data_preprocessor,
|
85 |
+
backbone=dict(
|
86 |
+
type='vit_h',
|
87 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
88 |
+
# type='vit_b',
|
89 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
90 |
+
),
|
91 |
+
panoptic_head=dict(
|
92 |
+
type='SAMInstanceHead',
|
93 |
+
num_things_classes=num_things_classes,
|
94 |
+
num_stuff_classes=num_stuff_classes,
|
95 |
+
with_multiscale=True,
|
96 |
+
with_sincos=True,
|
97 |
+
prompt_neck=dict(
|
98 |
+
type='SAMTransformerEDPromptGenNeck',
|
99 |
+
prompt_shape=prompt_shape,
|
100 |
+
in_channels=[1280] * 32,
|
101 |
+
inner_channels=32,
|
102 |
+
selected_channels=range(4, 32, 2),
|
103 |
+
# in_channels=[768] * 8,
|
104 |
+
num_encoders=1,
|
105 |
+
num_decoders=4,
|
106 |
+
out_channels=256
|
107 |
+
),
|
108 |
+
loss_cls=dict(
|
109 |
+
type='mmdet.CrossEntropyLoss',
|
110 |
+
use_sigmoid=False,
|
111 |
+
loss_weight=2.0,
|
112 |
+
reduction='mean',
|
113 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
114 |
+
loss_mask=dict(
|
115 |
+
type='mmdet.CrossEntropyLoss',
|
116 |
+
use_sigmoid=True,
|
117 |
+
reduction='mean',
|
118 |
+
loss_weight=5.0),
|
119 |
+
loss_dice=dict(
|
120 |
+
type='mmdet.DiceLoss',
|
121 |
+
use_sigmoid=True,
|
122 |
+
activate=True,
|
123 |
+
reduction='mean',
|
124 |
+
naive_dice=True,
|
125 |
+
eps=1.0,
|
126 |
+
loss_weight=5.0)),
|
127 |
+
panoptic_fusion_head=dict(
|
128 |
+
type='mmdet.MaskFormerFusionHead',
|
129 |
+
num_things_classes=num_things_classes,
|
130 |
+
num_stuff_classes=num_stuff_classes,
|
131 |
+
loss_panoptic=None,
|
132 |
+
init_cfg=None),
|
133 |
+
train_cfg=dict(
|
134 |
+
num_points=12544,
|
135 |
+
oversample_ratio=3.0,
|
136 |
+
importance_sample_ratio=0.75,
|
137 |
+
assigner=dict(
|
138 |
+
type='mmdet.HungarianAssigner',
|
139 |
+
match_costs=[
|
140 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
141 |
+
dict(
|
142 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
143 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
144 |
+
]),
|
145 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
146 |
+
test_cfg=dict(
|
147 |
+
panoptic_on=False,
|
148 |
+
# For now, the dataset does not support
|
149 |
+
# evaluating semantic segmentation metric.
|
150 |
+
semantic_on=False,
|
151 |
+
instance_on=True,
|
152 |
+
# max_per_image is for instance segmentation.
|
153 |
+
max_per_image=prompt_shape[0],
|
154 |
+
iou_thr=0.8,
|
155 |
+
# In Mask2Former's panoptic postprocessing,
|
156 |
+
# it will filter mask area where score is less than 0.5 .
|
157 |
+
filter_low_score=True),
|
158 |
+
)
|
159 |
+
|
160 |
+
task_name = 'ssdd_ins'
|
161 |
+
exp_name = 'E20230527_1'
|
162 |
+
logger = dict(
|
163 |
+
type='WandbLogger',
|
164 |
+
project=task_name,
|
165 |
+
group='sam',
|
166 |
+
name=exp_name
|
167 |
+
)
|
168 |
+
# logger = None
|
169 |
+
|
170 |
+
|
171 |
+
callbacks = [
|
172 |
+
param_scheduler_callback,
|
173 |
+
dict(
|
174 |
+
type='ModelCheckpoint',
|
175 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
176 |
+
save_last=True,
|
177 |
+
mode='max',
|
178 |
+
monitor='valsegm_map_0',
|
179 |
+
save_top_k=2,
|
180 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
181 |
+
),
|
182 |
+
dict(
|
183 |
+
type='LearningRateMonitor',
|
184 |
+
logging_interval='step'
|
185 |
+
)
|
186 |
+
]
|
187 |
+
|
188 |
+
|
189 |
+
trainer_cfg = dict(
|
190 |
+
compiled_model=False,
|
191 |
+
accelerator="auto",
|
192 |
+
strategy="auto",
|
193 |
+
# strategy="ddp",
|
194 |
+
# strategy='ddp_find_unused_parameters_true',
|
195 |
+
# precision='32',
|
196 |
+
# precision='16-mixed',
|
197 |
+
devices=8,
|
198 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
199 |
+
# default_root_dir='results/tmp',
|
200 |
+
max_epochs=max_epochs,
|
201 |
+
logger=logger,
|
202 |
+
callbacks=callbacks,
|
203 |
+
log_every_n_steps=10,
|
204 |
+
check_val_every_n_epoch=5,
|
205 |
+
benchmark=True,
|
206 |
+
# sync_batchnorm=True,
|
207 |
+
# fast_dev_run=True,
|
208 |
+
|
209 |
+
# limit_train_batches=1,
|
210 |
+
# limit_val_batches=0,
|
211 |
+
# limit_test_batches=None,
|
212 |
+
# limit_predict_batches=None,
|
213 |
+
# overfit_batches=0.0,
|
214 |
+
|
215 |
+
# val_check_interval=None,
|
216 |
+
# num_sanity_val_steps=0,
|
217 |
+
# enable_checkpointing=None,
|
218 |
+
# enable_progress_bar=None,
|
219 |
+
# enable_model_summary=None,
|
220 |
+
# accumulate_grad_batches=32,
|
221 |
+
# gradient_clip_val=15,
|
222 |
+
# gradient_clip_algorithm='norm',
|
223 |
+
# deterministic=None,
|
224 |
+
# inference_mode: bool=True,
|
225 |
+
use_distributed_sampler=True,
|
226 |
+
# profiler="simple",
|
227 |
+
# detect_anomaly=False,
|
228 |
+
# barebones=False,
|
229 |
+
# plugins=None,
|
230 |
+
# reload_dataloaders_every_n_epochs=0,
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
backend_args = None
|
235 |
+
train_pipeline = [
|
236 |
+
dict(type='mmdet.LoadImageFromFile'),
|
237 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
238 |
+
dict(type='mmdet.Resize', scale=image_size),
|
239 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
240 |
+
dict(type='mmdet.PackDetInputs')
|
241 |
+
]
|
242 |
+
|
243 |
+
test_pipeline = [
|
244 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
245 |
+
dict(type='mmdet.Resize', scale=image_size),
|
246 |
+
# If you don't have a gt annotation, delete the pipeline
|
247 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
248 |
+
dict(
|
249 |
+
type='mmdet.PackDetInputs',
|
250 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
251 |
+
'scale_factor'))
|
252 |
+
]
|
253 |
+
|
254 |
+
|
255 |
+
train_batch_size_per_gpu = 4
|
256 |
+
train_num_workers = 2
|
257 |
+
test_batch_size_per_gpu = 4
|
258 |
+
test_num_workers = 2
|
259 |
+
persistent_workers = True
|
260 |
+
|
261 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
262 |
+
dataset_type = 'SSDDInsSegDataset'
|
263 |
+
|
264 |
+
val_loader = dict(
|
265 |
+
batch_size=test_batch_size_per_gpu,
|
266 |
+
num_workers=test_num_workers,
|
267 |
+
persistent_workers=persistent_workers,
|
268 |
+
pin_memory=True,
|
269 |
+
dataset=dict(
|
270 |
+
type=dataset_type,
|
271 |
+
data_root=data_parent,
|
272 |
+
ann_file='annotations/SSDD_instances_val.json',
|
273 |
+
data_prefix=dict(img_path='imgs'),
|
274 |
+
test_mode=True,
|
275 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
276 |
+
pipeline=test_pipeline,
|
277 |
+
backend_args=backend_args))
|
278 |
+
|
279 |
+
datamodule_cfg = dict(
|
280 |
+
type='PLDataModule',
|
281 |
+
train_loader=dict(
|
282 |
+
batch_size=train_batch_size_per_gpu,
|
283 |
+
num_workers=train_num_workers,
|
284 |
+
persistent_workers=persistent_workers,
|
285 |
+
pin_memory=True,
|
286 |
+
dataset=dict(
|
287 |
+
type=dataset_type,
|
288 |
+
data_root=data_parent,
|
289 |
+
ann_file='annotations/SSDD_instances_train.json',
|
290 |
+
data_prefix=dict(img_path='imgs'),
|
291 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
292 |
+
pipeline=train_pipeline,
|
293 |
+
backend_args=backend_args)
|
294 |
+
),
|
295 |
+
val_loader=val_loader,
|
296 |
+
# test_loader=val_loader
|
297 |
+
predict_loader=val_loader
|
298 |
+
)
|
configs/rsprompter/rsprompter_query_whu_config.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'panoptic_fusion_head',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'panoptic_head': {'lr_mult': 1},
|
11 |
+
'panoptic_fusion_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 5000
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0005,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=1e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
evaluator_ = dict(
|
49 |
+
type='CocoPLMetric',
|
50 |
+
metric=['bbox', 'segm'],
|
51 |
+
proposal_nums=[1, 10, 100]
|
52 |
+
)
|
53 |
+
|
54 |
+
evaluator = dict(
|
55 |
+
# train_evaluator=evaluator_,
|
56 |
+
val_evaluator=evaluator_,
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
image_size = (1024, 1024)
|
61 |
+
|
62 |
+
data_preprocessor = dict(
|
63 |
+
type='mmdet.DetDataPreprocessor',
|
64 |
+
mean=[123.675, 116.28, 103.53],
|
65 |
+
std=[58.395, 57.12, 57.375],
|
66 |
+
bgr_to_rgb=True,
|
67 |
+
pad_size_divisor=32,
|
68 |
+
pad_mask=True,
|
69 |
+
mask_pad_value=0,
|
70 |
+
)
|
71 |
+
|
72 |
+
num_things_classes = 1
|
73 |
+
num_stuff_classes = 0
|
74 |
+
num_classes = num_things_classes + num_stuff_classes
|
75 |
+
prompt_shape = (90, 4)
|
76 |
+
|
77 |
+
|
78 |
+
model_cfg = dict(
|
79 |
+
type='SegSAMPLer',
|
80 |
+
hyperparameters=dict(
|
81 |
+
optimizer=optimizer,
|
82 |
+
param_scheduler=param_scheduler,
|
83 |
+
evaluator=evaluator,
|
84 |
+
),
|
85 |
+
need_train_names=sub_model_train,
|
86 |
+
data_preprocessor=data_preprocessor,
|
87 |
+
backbone=dict(
|
88 |
+
type='vit_h',
|
89 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
90 |
+
# type='vit_b',
|
91 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
92 |
+
),
|
93 |
+
panoptic_head=dict(
|
94 |
+
type='SAMInstanceHead',
|
95 |
+
num_things_classes=num_things_classes,
|
96 |
+
num_stuff_classes=num_stuff_classes,
|
97 |
+
with_multiscale=True,
|
98 |
+
with_sincos=True,
|
99 |
+
prompt_neck=dict(
|
100 |
+
type='SAMTransformerEDPromptGenNeck',
|
101 |
+
prompt_shape=prompt_shape,
|
102 |
+
in_channels=[1280] * 32,
|
103 |
+
inner_channels=64,
|
104 |
+
selected_channels=range(4, 32, 2),
|
105 |
+
# in_channels=[768] * 8,
|
106 |
+
num_encoders=1,
|
107 |
+
num_decoders=4,
|
108 |
+
out_channels=256
|
109 |
+
),
|
110 |
+
loss_cls=dict(
|
111 |
+
type='mmdet.CrossEntropyLoss',
|
112 |
+
use_sigmoid=False,
|
113 |
+
loss_weight=2.0,
|
114 |
+
reduction='mean',
|
115 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
116 |
+
loss_mask=dict(
|
117 |
+
type='mmdet.CrossEntropyLoss',
|
118 |
+
use_sigmoid=True,
|
119 |
+
reduction='mean',
|
120 |
+
loss_weight=5.0),
|
121 |
+
loss_dice=dict(
|
122 |
+
type='mmdet.DiceLoss',
|
123 |
+
use_sigmoid=True,
|
124 |
+
activate=True,
|
125 |
+
reduction='mean',
|
126 |
+
naive_dice=True,
|
127 |
+
eps=1.0,
|
128 |
+
loss_weight=5.0)),
|
129 |
+
panoptic_fusion_head=dict(
|
130 |
+
type='mmdet.MaskFormerFusionHead',
|
131 |
+
num_things_classes=num_things_classes,
|
132 |
+
num_stuff_classes=num_stuff_classes,
|
133 |
+
loss_panoptic=None,
|
134 |
+
init_cfg=None),
|
135 |
+
train_cfg=dict(
|
136 |
+
num_points=12544,
|
137 |
+
oversample_ratio=3.0,
|
138 |
+
importance_sample_ratio=0.75,
|
139 |
+
assigner=dict(
|
140 |
+
type='mmdet.HungarianAssigner',
|
141 |
+
match_costs=[
|
142 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
143 |
+
dict(
|
144 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
145 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
146 |
+
]),
|
147 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
148 |
+
test_cfg=dict(
|
149 |
+
panoptic_on=False,
|
150 |
+
# For now, the dataset does not support
|
151 |
+
# evaluating semantic segmentation metric.
|
152 |
+
semantic_on=False,
|
153 |
+
instance_on=True,
|
154 |
+
# max_per_image is for instance segmentation.
|
155 |
+
max_per_image=80,
|
156 |
+
iou_thr=0.8,
|
157 |
+
# In Mask2Former's panoptic postprocessing,
|
158 |
+
# it will filter mask area where score is less than 0.5 .
|
159 |
+
filter_low_score=True),
|
160 |
+
)
|
161 |
+
|
162 |
+
task_name = 'whu_ins'
|
163 |
+
exp_name = 'E20230603_0'
|
164 |
+
logger = dict(
|
165 |
+
type='WandbLogger',
|
166 |
+
project=task_name,
|
167 |
+
group='sam',
|
168 |
+
name=exp_name
|
169 |
+
)
|
170 |
+
# logger = None
|
171 |
+
|
172 |
+
|
173 |
+
callbacks = [
|
174 |
+
param_scheduler_callback,
|
175 |
+
dict(
|
176 |
+
type='ModelCheckpoint',
|
177 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
178 |
+
save_last=True,
|
179 |
+
mode='max',
|
180 |
+
monitor='valsegm_map_0',
|
181 |
+
save_top_k=2,
|
182 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
183 |
+
),
|
184 |
+
dict(
|
185 |
+
type='LearningRateMonitor',
|
186 |
+
logging_interval='step'
|
187 |
+
)
|
188 |
+
]
|
189 |
+
|
190 |
+
|
191 |
+
trainer_cfg = dict(
|
192 |
+
compiled_model=False,
|
193 |
+
accelerator="auto",
|
194 |
+
strategy="auto",
|
195 |
+
# strategy="ddp",
|
196 |
+
# strategy='ddp_find_unused_parameters_true',
|
197 |
+
# precision='32',
|
198 |
+
# precision='16-mixed',
|
199 |
+
devices=8,
|
200 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
201 |
+
# default_root_dir='results/tmp',
|
202 |
+
max_epochs=max_epochs,
|
203 |
+
logger=logger,
|
204 |
+
callbacks=callbacks,
|
205 |
+
log_every_n_steps=20,
|
206 |
+
check_val_every_n_epoch=5,
|
207 |
+
benchmark=True,
|
208 |
+
# sync_batchnorm=True,
|
209 |
+
# fast_dev_run=True,
|
210 |
+
|
211 |
+
# limit_train_batches=1,
|
212 |
+
# limit_val_batches=0,
|
213 |
+
# limit_test_batches=None,
|
214 |
+
# limit_predict_batches=None,
|
215 |
+
# overfit_batches=0.0,
|
216 |
+
|
217 |
+
# val_check_interval=None,
|
218 |
+
# num_sanity_val_steps=0,
|
219 |
+
# enable_checkpointing=None,
|
220 |
+
# enable_progress_bar=None,
|
221 |
+
# enable_model_summary=None,
|
222 |
+
# accumulate_grad_batches=32,
|
223 |
+
# gradient_clip_val=15,
|
224 |
+
# gradient_clip_algorithm='norm',
|
225 |
+
# deterministic=None,
|
226 |
+
# inference_mode: bool=True,
|
227 |
+
use_distributed_sampler=True,
|
228 |
+
# profiler="simple",
|
229 |
+
# detect_anomaly=False,
|
230 |
+
# barebones=False,
|
231 |
+
# plugins=None,
|
232 |
+
# reload_dataloaders_every_n_epochs=0,
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
backend_args = None
|
237 |
+
train_pipeline = [
|
238 |
+
dict(type='mmdet.LoadImageFromFile'),
|
239 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
240 |
+
dict(type='mmdet.Resize', scale=image_size),
|
241 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
242 |
+
dict(type='mmdet.PackDetInputs')
|
243 |
+
]
|
244 |
+
|
245 |
+
test_pipeline = [
|
246 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
247 |
+
dict(type='mmdet.Resize', scale=image_size),
|
248 |
+
# If you don't have a gt annotation, delete the pipeline
|
249 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
250 |
+
dict(
|
251 |
+
type='mmdet.PackDetInputs',
|
252 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
253 |
+
'scale_factor'))
|
254 |
+
]
|
255 |
+
|
256 |
+
|
257 |
+
train_batch_size_per_gpu = 3
|
258 |
+
train_num_workers = 2
|
259 |
+
test_batch_size_per_gpu = 3
|
260 |
+
test_num_workers = 2
|
261 |
+
persistent_workers = True
|
262 |
+
|
263 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
264 |
+
train_data_prefix = 'train/'
|
265 |
+
val_data_prefix = 'test/'
|
266 |
+
|
267 |
+
dataset_type = 'WHUInsSegDataset'
|
268 |
+
|
269 |
+
val_loader = dict(
|
270 |
+
batch_size=test_batch_size_per_gpu,
|
271 |
+
num_workers=test_num_workers,
|
272 |
+
persistent_workers=persistent_workers,
|
273 |
+
pin_memory=True,
|
274 |
+
dataset=dict(
|
275 |
+
type=dataset_type,
|
276 |
+
data_root=data_parent,
|
277 |
+
ann_file='annotations/WHU_building_test.json',
|
278 |
+
data_prefix=dict(img_path=val_data_prefix + '/image', seg_path=val_data_prefix + '/label'),
|
279 |
+
test_mode=True,
|
280 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
281 |
+
pipeline=test_pipeline,
|
282 |
+
backend_args=backend_args))
|
283 |
+
|
284 |
+
datamodule_cfg = dict(
|
285 |
+
type='PLDataModule',
|
286 |
+
train_loader=dict(
|
287 |
+
batch_size=train_batch_size_per_gpu,
|
288 |
+
num_workers=train_num_workers,
|
289 |
+
persistent_workers=persistent_workers,
|
290 |
+
pin_memory=True,
|
291 |
+
dataset=dict(
|
292 |
+
type=dataset_type,
|
293 |
+
data_root=data_parent,
|
294 |
+
ann_file='annotations/WHU_building_train.json',
|
295 |
+
data_prefix=dict(img_path=train_data_prefix + '/image', seg_path=train_data_prefix + '/label'),
|
296 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
297 |
+
pipeline=train_pipeline,
|
298 |
+
backend_args=backend_args)
|
299 |
+
),
|
300 |
+
val_loader=val_loader,
|
301 |
+
# test_loader=val_loader
|
302 |
+
predict_loader=val_loader
|
303 |
+
)
|
configs/rsprompter/samdet_fasterrcnn_nwpu_config.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'whole_model'
|
5 |
+
]
|
6 |
+
|
7 |
+
sub_model_optim = {
|
8 |
+
'whole_model': {'lr_mult': 1},
|
9 |
+
}
|
10 |
+
|
11 |
+
max_epochs = 1000
|
12 |
+
|
13 |
+
optimizer = dict(
|
14 |
+
type='AdamW',
|
15 |
+
sub_model=sub_model_optim,
|
16 |
+
lr=0.0005,
|
17 |
+
weight_decay=1e-3
|
18 |
+
)
|
19 |
+
|
20 |
+
param_scheduler = [
|
21 |
+
# warm up learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='LinearLR',
|
24 |
+
start_factor=5e-4,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=0,
|
27 |
+
end=1,
|
28 |
+
# update by iter
|
29 |
+
convert_to_iter_based=True),
|
30 |
+
# main learning rate scheduler
|
31 |
+
dict(
|
32 |
+
type='CosineAnnealingLR',
|
33 |
+
T_max=max_epochs,
|
34 |
+
by_epoch=True,
|
35 |
+
begin=1,
|
36 |
+
end=max_epochs,
|
37 |
+
),
|
38 |
+
]
|
39 |
+
|
40 |
+
param_scheduler_callback = dict(
|
41 |
+
type='ParamSchedulerHook'
|
42 |
+
)
|
43 |
+
|
44 |
+
evaluator_ = dict(
|
45 |
+
type='CocoPLMetric',
|
46 |
+
metric=['bbox', 'segm'],
|
47 |
+
proposal_nums=[1, 10, 100]
|
48 |
+
)
|
49 |
+
|
50 |
+
evaluator = dict(
|
51 |
+
# train_evaluator=evaluator_,
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 10
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
|
72 |
+
model = dict(
|
73 |
+
type='mmdet.FasterRCNN',
|
74 |
+
data_preprocessor=data_preprocessor,
|
75 |
+
backbone=dict(
|
76 |
+
type='mmdet.ResNet',
|
77 |
+
depth=50,
|
78 |
+
num_stages=4,
|
79 |
+
out_indices=(0, 1, 2, 3),
|
80 |
+
frozen_stages=1,
|
81 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
82 |
+
norm_eval=True,
|
83 |
+
style='pytorch',
|
84 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
85 |
+
neck=dict(
|
86 |
+
type='mmdet.FPN',
|
87 |
+
in_channels=[256, 512, 1024, 2048],
|
88 |
+
out_channels=256,
|
89 |
+
num_outs=5),
|
90 |
+
rpn_head=dict(
|
91 |
+
type='mmdet.RPNHead',
|
92 |
+
in_channels=256,
|
93 |
+
feat_channels=256,
|
94 |
+
anchor_generator=dict(
|
95 |
+
type='mmdet.AnchorGenerator',
|
96 |
+
scales=[8],
|
97 |
+
ratios=[0.5, 1.0, 2.0],
|
98 |
+
strides=[4, 8, 16, 32, 64]),
|
99 |
+
bbox_coder=dict(
|
100 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
101 |
+
target_means=[.0, .0, .0, .0],
|
102 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
103 |
+
loss_cls=dict(
|
104 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
105 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
106 |
+
roi_head=dict(
|
107 |
+
type='mmdet.StandardRoIHead',
|
108 |
+
bbox_roi_extractor=dict(
|
109 |
+
type='mmdet.SingleRoIExtractor',
|
110 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
111 |
+
out_channels=256,
|
112 |
+
featmap_strides=[4, 8, 16, 32]),
|
113 |
+
bbox_head=dict(
|
114 |
+
type='mmdet.Shared2FCBBoxHead',
|
115 |
+
in_channels=256,
|
116 |
+
fc_out_channels=1024,
|
117 |
+
roi_feat_size=7,
|
118 |
+
num_classes=80,
|
119 |
+
bbox_coder=dict(
|
120 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
121 |
+
target_means=[0., 0., 0., 0.],
|
122 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
123 |
+
reg_class_agnostic=False,
|
124 |
+
loss_cls=dict(
|
125 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
126 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))),
|
127 |
+
# model training and testing settings
|
128 |
+
train_cfg=dict(
|
129 |
+
rpn=dict(
|
130 |
+
assigner=dict(
|
131 |
+
type='mmdet.MaxIoUAssigner',
|
132 |
+
pos_iou_thr=0.7,
|
133 |
+
neg_iou_thr=0.3,
|
134 |
+
min_pos_iou=0.3,
|
135 |
+
match_low_quality=True,
|
136 |
+
ignore_iof_thr=-1),
|
137 |
+
sampler=dict(
|
138 |
+
type='mmdet.RandomSampler',
|
139 |
+
num=256,
|
140 |
+
pos_fraction=0.5,
|
141 |
+
neg_pos_ub=-1,
|
142 |
+
add_gt_as_proposals=False),
|
143 |
+
allowed_border=-1,
|
144 |
+
pos_weight=-1,
|
145 |
+
debug=False),
|
146 |
+
rpn_proposal=dict(
|
147 |
+
nms_pre=2000,
|
148 |
+
max_per_img=1000,
|
149 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
150 |
+
min_bbox_size=0),
|
151 |
+
rcnn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.5,
|
155 |
+
neg_iou_thr=0.5,
|
156 |
+
min_pos_iou=0.5,
|
157 |
+
match_low_quality=False,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.25,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=True),
|
165 |
+
pos_weight=-1,
|
166 |
+
debug=False)),
|
167 |
+
test_cfg=dict(
|
168 |
+
rpn=dict(
|
169 |
+
nms_pre=1000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
score_thr=0.05,
|
175 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
176 |
+
max_per_img=100)
|
177 |
+
# soft-nms is also supported for rcnn testing
|
178 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
179 |
+
))
|
180 |
+
|
181 |
+
model_cfg = dict(
|
182 |
+
type='SegSAMDetPLer',
|
183 |
+
hyperparameters=dict(
|
184 |
+
optimizer=optimizer,
|
185 |
+
param_scheduler=param_scheduler,
|
186 |
+
evaluator=evaluator,
|
187 |
+
),
|
188 |
+
need_train_names=sub_model_train,
|
189 |
+
whole_model=model,
|
190 |
+
backbone=dict(
|
191 |
+
type='vit_h',
|
192 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
193 |
+
# type='vit_b',
|
194 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
195 |
+
)
|
196 |
+
)
|
197 |
+
|
198 |
+
task_name = 'nwpu_ins'
|
199 |
+
exp_name = 'E20230531_9'
|
200 |
+
logger = dict(
|
201 |
+
type='WandbLogger',
|
202 |
+
project=task_name,
|
203 |
+
group='samdet',
|
204 |
+
name=exp_name
|
205 |
+
)
|
206 |
+
# logger = None
|
207 |
+
|
208 |
+
callbacks = [
|
209 |
+
param_scheduler_callback,
|
210 |
+
dict(
|
211 |
+
type='ModelCheckpoint',
|
212 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
213 |
+
save_last=True,
|
214 |
+
mode='max',
|
215 |
+
monitor='valsegm_map_0',
|
216 |
+
save_top_k=2,
|
217 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
218 |
+
),
|
219 |
+
dict(
|
220 |
+
type='LearningRateMonitor',
|
221 |
+
logging_interval='step'
|
222 |
+
)
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
trainer_cfg = dict(
|
227 |
+
compiled_model=False,
|
228 |
+
accelerator="auto",
|
229 |
+
# strategy="auto",
|
230 |
+
# strategy="ddp",
|
231 |
+
strategy='ddp_find_unused_parameters_true',
|
232 |
+
# precision='32',
|
233 |
+
# precision='16-mixed',
|
234 |
+
devices=8,
|
235 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
236 |
+
# default_root_dir='results/tmp',
|
237 |
+
max_epochs=max_epochs,
|
238 |
+
logger=logger,
|
239 |
+
callbacks=callbacks,
|
240 |
+
log_every_n_steps=5,
|
241 |
+
check_val_every_n_epoch=5,
|
242 |
+
benchmark=True,
|
243 |
+
# sync_batchnorm=True,
|
244 |
+
# fast_dev_run=True,
|
245 |
+
|
246 |
+
# limit_train_batches=1,
|
247 |
+
# limit_val_batches=0,
|
248 |
+
# limit_test_batches=None,
|
249 |
+
# limit_predict_batches=None,
|
250 |
+
# overfit_batches=0.0,
|
251 |
+
|
252 |
+
# val_check_interval=None,
|
253 |
+
# num_sanity_val_steps=0,
|
254 |
+
# enable_checkpointing=None,
|
255 |
+
# enable_progress_bar=None,
|
256 |
+
# enable_model_summary=None,
|
257 |
+
# accumulate_grad_batches=32,
|
258 |
+
# gradient_clip_val=15,
|
259 |
+
# gradient_clip_algorithm='norm',
|
260 |
+
# deterministic=None,
|
261 |
+
# inference_mode: bool=True,
|
262 |
+
use_distributed_sampler=True,
|
263 |
+
# profiler="simple",
|
264 |
+
# detect_anomaly=False,
|
265 |
+
# barebones=False,
|
266 |
+
# plugins=None,
|
267 |
+
# reload_dataloaders_every_n_epochs=0,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
backend_args = None
|
272 |
+
train_pipeline = [
|
273 |
+
dict(type='mmdet.LoadImageFromFile'),
|
274 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
275 |
+
dict(type='mmdet.Resize', scale=image_size),
|
276 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
277 |
+
dict(type='mmdet.PackDetInputs')
|
278 |
+
]
|
279 |
+
|
280 |
+
test_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
282 |
+
dict(type='mmdet.Resize', scale=image_size),
|
283 |
+
# If you don't have a gt annotation, delete the pipeline
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(
|
286 |
+
type='mmdet.PackDetInputs',
|
287 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
288 |
+
'scale_factor'))
|
289 |
+
]
|
290 |
+
|
291 |
+
|
292 |
+
train_batch_size_per_gpu = 4
|
293 |
+
train_num_workers = 4
|
294 |
+
test_batch_size_per_gpu = 4
|
295 |
+
test_num_workers = 4
|
296 |
+
persistent_workers = True
|
297 |
+
|
298 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
299 |
+
train_data_prefix = ''
|
300 |
+
val_data_prefix = ''
|
301 |
+
|
302 |
+
dataset_type = 'NWPUInsSegDataset'
|
303 |
+
|
304 |
+
val_loader = dict(
|
305 |
+
batch_size=test_batch_size_per_gpu,
|
306 |
+
num_workers=test_num_workers,
|
307 |
+
persistent_workers=persistent_workers,
|
308 |
+
pin_memory=True,
|
309 |
+
dataset=dict(
|
310 |
+
type=dataset_type,
|
311 |
+
data_root=data_parent,
|
312 |
+
ann_file='NWPU_instances_val.json',
|
313 |
+
data_prefix=dict(img_path='positive image set'),
|
314 |
+
test_mode=True,
|
315 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
316 |
+
pipeline=test_pipeline,
|
317 |
+
backend_args=backend_args))
|
318 |
+
|
319 |
+
datamodule_cfg = dict(
|
320 |
+
type='PLDataModule',
|
321 |
+
train_loader=dict(
|
322 |
+
batch_size=train_batch_size_per_gpu,
|
323 |
+
num_workers=train_num_workers,
|
324 |
+
persistent_workers=persistent_workers,
|
325 |
+
pin_memory=True,
|
326 |
+
dataset=dict(
|
327 |
+
type=dataset_type,
|
328 |
+
data_root=data_parent,
|
329 |
+
ann_file='NWPU_instances_train.json',
|
330 |
+
data_prefix=dict(img_path='positive image set'),
|
331 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
332 |
+
pipeline=train_pipeline,
|
333 |
+
backend_args=backend_args)
|
334 |
+
),
|
335 |
+
val_loader=val_loader,
|
336 |
+
# test_loader=val_loader
|
337 |
+
predict_loader=val_loader
|
338 |
+
)
|
configs/rsprompter/samdet_fasterrcnn_ssdd_config.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'whole_model'
|
5 |
+
]
|
6 |
+
|
7 |
+
sub_model_optim = {
|
8 |
+
'whole_model': {'lr_mult': 1},
|
9 |
+
}
|
10 |
+
|
11 |
+
max_epochs = 1000
|
12 |
+
|
13 |
+
optimizer = dict(
|
14 |
+
type='AdamW',
|
15 |
+
sub_model=sub_model_optim,
|
16 |
+
lr=0.0005,
|
17 |
+
weight_decay=1e-3
|
18 |
+
)
|
19 |
+
|
20 |
+
param_scheduler = [
|
21 |
+
# warm up learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='LinearLR',
|
24 |
+
start_factor=5e-4,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=0,
|
27 |
+
end=1,
|
28 |
+
# update by iter
|
29 |
+
convert_to_iter_based=True),
|
30 |
+
# main learning rate scheduler
|
31 |
+
dict(
|
32 |
+
type='CosineAnnealingLR',
|
33 |
+
T_max=max_epochs,
|
34 |
+
by_epoch=True,
|
35 |
+
begin=1,
|
36 |
+
end=max_epochs,
|
37 |
+
),
|
38 |
+
]
|
39 |
+
|
40 |
+
param_scheduler_callback = dict(
|
41 |
+
type='ParamSchedulerHook'
|
42 |
+
)
|
43 |
+
|
44 |
+
evaluator_ = dict(
|
45 |
+
type='CocoPLMetric',
|
46 |
+
metric=['bbox', 'segm'],
|
47 |
+
proposal_nums=[1, 10, 100]
|
48 |
+
)
|
49 |
+
|
50 |
+
evaluator = dict(
|
51 |
+
# train_evaluator=evaluator_,
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
|
72 |
+
model = dict(
|
73 |
+
type='mmdet.FasterRCNN',
|
74 |
+
data_preprocessor=data_preprocessor,
|
75 |
+
backbone=dict(
|
76 |
+
type='mmdet.ResNet',
|
77 |
+
depth=50,
|
78 |
+
num_stages=4,
|
79 |
+
out_indices=(0, 1, 2, 3),
|
80 |
+
frozen_stages=1,
|
81 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
82 |
+
norm_eval=True,
|
83 |
+
style='pytorch',
|
84 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
85 |
+
neck=dict(
|
86 |
+
type='mmdet.FPN',
|
87 |
+
in_channels=[256, 512, 1024, 2048],
|
88 |
+
out_channels=256,
|
89 |
+
num_outs=5),
|
90 |
+
rpn_head=dict(
|
91 |
+
type='mmdet.RPNHead',
|
92 |
+
in_channels=256,
|
93 |
+
feat_channels=256,
|
94 |
+
anchor_generator=dict(
|
95 |
+
type='mmdet.AnchorGenerator',
|
96 |
+
scales=[8],
|
97 |
+
ratios=[0.5, 1.0, 2.0],
|
98 |
+
strides=[4, 8, 16, 32, 64]),
|
99 |
+
bbox_coder=dict(
|
100 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
101 |
+
target_means=[.0, .0, .0, .0],
|
102 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
103 |
+
loss_cls=dict(
|
104 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
105 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
106 |
+
roi_head=dict(
|
107 |
+
type='mmdet.StandardRoIHead',
|
108 |
+
bbox_roi_extractor=dict(
|
109 |
+
type='mmdet.SingleRoIExtractor',
|
110 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
111 |
+
out_channels=256,
|
112 |
+
featmap_strides=[4, 8, 16, 32]),
|
113 |
+
bbox_head=dict(
|
114 |
+
type='mmdet.Shared2FCBBoxHead',
|
115 |
+
in_channels=256,
|
116 |
+
fc_out_channels=1024,
|
117 |
+
roi_feat_size=7,
|
118 |
+
num_classes=80,
|
119 |
+
bbox_coder=dict(
|
120 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
121 |
+
target_means=[0., 0., 0., 0.],
|
122 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
123 |
+
reg_class_agnostic=False,
|
124 |
+
loss_cls=dict(
|
125 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
126 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))),
|
127 |
+
# model training and testing settings
|
128 |
+
train_cfg=dict(
|
129 |
+
rpn=dict(
|
130 |
+
assigner=dict(
|
131 |
+
type='mmdet.MaxIoUAssigner',
|
132 |
+
pos_iou_thr=0.7,
|
133 |
+
neg_iou_thr=0.3,
|
134 |
+
min_pos_iou=0.3,
|
135 |
+
match_low_quality=True,
|
136 |
+
ignore_iof_thr=-1),
|
137 |
+
sampler=dict(
|
138 |
+
type='mmdet.RandomSampler',
|
139 |
+
num=256,
|
140 |
+
pos_fraction=0.5,
|
141 |
+
neg_pos_ub=-1,
|
142 |
+
add_gt_as_proposals=False),
|
143 |
+
allowed_border=-1,
|
144 |
+
pos_weight=-1,
|
145 |
+
debug=False),
|
146 |
+
rpn_proposal=dict(
|
147 |
+
nms_pre=2000,
|
148 |
+
max_per_img=1000,
|
149 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
150 |
+
min_bbox_size=0),
|
151 |
+
rcnn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.5,
|
155 |
+
neg_iou_thr=0.5,
|
156 |
+
min_pos_iou=0.5,
|
157 |
+
match_low_quality=False,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.25,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=True),
|
165 |
+
pos_weight=-1,
|
166 |
+
debug=False)),
|
167 |
+
test_cfg=dict(
|
168 |
+
rpn=dict(
|
169 |
+
nms_pre=1000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
score_thr=0.05,
|
175 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
176 |
+
max_per_img=100)
|
177 |
+
# soft-nms is also supported for rcnn testing
|
178 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
179 |
+
))
|
180 |
+
|
181 |
+
model_cfg = dict(
|
182 |
+
type='SegSAMDetPLer',
|
183 |
+
hyperparameters=dict(
|
184 |
+
optimizer=optimizer,
|
185 |
+
param_scheduler=param_scheduler,
|
186 |
+
evaluator=evaluator,
|
187 |
+
),
|
188 |
+
need_train_names=sub_model_train,
|
189 |
+
whole_model=model,
|
190 |
+
backbone=dict(
|
191 |
+
type='vit_h',
|
192 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
193 |
+
# type='vit_b',
|
194 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
195 |
+
)
|
196 |
+
)
|
197 |
+
|
198 |
+
task_name = 'ssdd_ins'
|
199 |
+
exp_name = 'E20230531_8'
|
200 |
+
logger = dict(
|
201 |
+
type='WandbLogger',
|
202 |
+
project=task_name,
|
203 |
+
group='samdet',
|
204 |
+
name=exp_name
|
205 |
+
)
|
206 |
+
# logger = None
|
207 |
+
|
208 |
+
callbacks = [
|
209 |
+
param_scheduler_callback,
|
210 |
+
dict(
|
211 |
+
type='ModelCheckpoint',
|
212 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
213 |
+
save_last=True,
|
214 |
+
mode='max',
|
215 |
+
monitor='valsegm_map_0',
|
216 |
+
save_top_k=2,
|
217 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
218 |
+
),
|
219 |
+
dict(
|
220 |
+
type='LearningRateMonitor',
|
221 |
+
logging_interval='step'
|
222 |
+
)
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
trainer_cfg = dict(
|
227 |
+
compiled_model=False,
|
228 |
+
accelerator="auto",
|
229 |
+
# strategy="auto",
|
230 |
+
# strategy="ddp",
|
231 |
+
strategy='ddp_find_unused_parameters_true',
|
232 |
+
# precision='32',
|
233 |
+
# precision='16-mixed',
|
234 |
+
devices=8,
|
235 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
236 |
+
# default_root_dir='results/tmp',
|
237 |
+
max_epochs=max_epochs,
|
238 |
+
logger=logger,
|
239 |
+
callbacks=callbacks,
|
240 |
+
log_every_n_steps=5,
|
241 |
+
check_val_every_n_epoch=5,
|
242 |
+
benchmark=True,
|
243 |
+
# sync_batchnorm=True,
|
244 |
+
# fast_dev_run=True,
|
245 |
+
|
246 |
+
# limit_train_batches=1,
|
247 |
+
# limit_val_batches=0,
|
248 |
+
# limit_test_batches=None,
|
249 |
+
# limit_predict_batches=None,
|
250 |
+
# overfit_batches=0.0,
|
251 |
+
|
252 |
+
# val_check_interval=None,
|
253 |
+
# num_sanity_val_steps=0,
|
254 |
+
# enable_checkpointing=None,
|
255 |
+
# enable_progress_bar=None,
|
256 |
+
# enable_model_summary=None,
|
257 |
+
# accumulate_grad_batches=32,
|
258 |
+
# gradient_clip_val=15,
|
259 |
+
# gradient_clip_algorithm='norm',
|
260 |
+
# deterministic=None,
|
261 |
+
# inference_mode: bool=True,
|
262 |
+
use_distributed_sampler=True,
|
263 |
+
# profiler="simple",
|
264 |
+
# detect_anomaly=False,
|
265 |
+
# barebones=False,
|
266 |
+
# plugins=None,
|
267 |
+
# reload_dataloaders_every_n_epochs=0,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
backend_args = None
|
272 |
+
train_pipeline = [
|
273 |
+
dict(type='mmdet.LoadImageFromFile'),
|
274 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
275 |
+
dict(type='mmdet.Resize', scale=image_size),
|
276 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
277 |
+
dict(type='mmdet.PackDetInputs')
|
278 |
+
]
|
279 |
+
|
280 |
+
test_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
282 |
+
dict(type='mmdet.Resize', scale=image_size),
|
283 |
+
# If you don't have a gt annotation, delete the pipeline
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(
|
286 |
+
type='mmdet.PackDetInputs',
|
287 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
288 |
+
'scale_factor'))
|
289 |
+
]
|
290 |
+
|
291 |
+
|
292 |
+
train_batch_size_per_gpu = 4
|
293 |
+
train_num_workers = 4
|
294 |
+
test_batch_size_per_gpu = 4
|
295 |
+
test_num_workers = 4
|
296 |
+
persistent_workers = True
|
297 |
+
|
298 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
299 |
+
dataset_type = 'SSDDInsSegDataset'
|
300 |
+
|
301 |
+
|
302 |
+
val_loader = dict(
|
303 |
+
batch_size=test_batch_size_per_gpu,
|
304 |
+
num_workers=test_num_workers,
|
305 |
+
persistent_workers=persistent_workers,
|
306 |
+
pin_memory=True,
|
307 |
+
dataset=dict(
|
308 |
+
type=dataset_type,
|
309 |
+
data_root=data_parent,
|
310 |
+
# ann_file='NWPU_instances_val.json',
|
311 |
+
# data_prefix=dict(img_path='positive image set'),
|
312 |
+
ann_file='annotations/SSDD_instances_val.json',
|
313 |
+
data_prefix=dict(img_path='imgs'),
|
314 |
+
# ann_file='annotations/WHU_building_test.json',
|
315 |
+
# data_prefix=dict(img_path=val_data_prefix + '/image'),
|
316 |
+
test_mode=True,
|
317 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
318 |
+
pipeline=test_pipeline,
|
319 |
+
backend_args=backend_args))
|
320 |
+
|
321 |
+
datamodule_cfg = dict(
|
322 |
+
type='PLDataModule',
|
323 |
+
train_loader=dict(
|
324 |
+
batch_size=train_batch_size_per_gpu,
|
325 |
+
num_workers=train_num_workers,
|
326 |
+
persistent_workers=persistent_workers,
|
327 |
+
pin_memory=True,
|
328 |
+
dataset=dict(
|
329 |
+
type=dataset_type,
|
330 |
+
data_root=data_parent,
|
331 |
+
# ann_file='NWPU_instances_train.json',
|
332 |
+
# data_prefix=dict(img_path='positive image set'),
|
333 |
+
ann_file='annotations/SSDD_instances_train.json',
|
334 |
+
data_prefix=dict(img_path='imgs'),
|
335 |
+
# ann_file='NWPU_instances_train.json',
|
336 |
+
# data_prefix=dict(img_path='positive image set'),
|
337 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
338 |
+
pipeline=train_pipeline,
|
339 |
+
backend_args=backend_args)
|
340 |
+
),
|
341 |
+
val_loader=val_loader,
|
342 |
+
# test_loader=val_loader
|
343 |
+
predict_loader=val_loader
|
344 |
+
)
|
configs/rsprompter/samdet_fasterrcnn_whu_config.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'whole_model'
|
5 |
+
]
|
6 |
+
|
7 |
+
sub_model_optim = {
|
8 |
+
'whole_model': {'lr_mult': 1},
|
9 |
+
}
|
10 |
+
|
11 |
+
max_epochs = 100
|
12 |
+
|
13 |
+
optimizer = dict(
|
14 |
+
type='AdamW',
|
15 |
+
sub_model=sub_model_optim,
|
16 |
+
lr=0.0001,
|
17 |
+
weight_decay=1e-3
|
18 |
+
)
|
19 |
+
|
20 |
+
param_scheduler = [
|
21 |
+
# warm up learning rate scheduler
|
22 |
+
dict(
|
23 |
+
type='LinearLR',
|
24 |
+
start_factor=1e-4,
|
25 |
+
by_epoch=True,
|
26 |
+
begin=0,
|
27 |
+
end=1,
|
28 |
+
# update by iter
|
29 |
+
convert_to_iter_based=True),
|
30 |
+
# main learning rate scheduler
|
31 |
+
dict(
|
32 |
+
type='CosineAnnealingLR',
|
33 |
+
T_max=max_epochs,
|
34 |
+
by_epoch=True,
|
35 |
+
begin=1,
|
36 |
+
end=max_epochs,
|
37 |
+
),
|
38 |
+
]
|
39 |
+
|
40 |
+
param_scheduler_callback = dict(
|
41 |
+
type='ParamSchedulerHook'
|
42 |
+
)
|
43 |
+
|
44 |
+
evaluator_ = dict(
|
45 |
+
type='CocoPLMetric',
|
46 |
+
metric=['bbox', 'segm'],
|
47 |
+
proposal_nums=[1, 10, 100]
|
48 |
+
)
|
49 |
+
|
50 |
+
evaluator = dict(
|
51 |
+
# train_evaluator=evaluator_,
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
|
72 |
+
model = dict(
|
73 |
+
type='mmdet.FasterRCNN',
|
74 |
+
data_preprocessor=data_preprocessor,
|
75 |
+
backbone=dict(
|
76 |
+
type='mmdet.ResNet',
|
77 |
+
depth=50,
|
78 |
+
num_stages=4,
|
79 |
+
out_indices=(0, 1, 2, 3),
|
80 |
+
frozen_stages=1,
|
81 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
82 |
+
norm_eval=True,
|
83 |
+
style='pytorch',
|
84 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
85 |
+
neck=dict(
|
86 |
+
type='mmdet.FPN',
|
87 |
+
in_channels=[256, 512, 1024, 2048],
|
88 |
+
out_channels=256,
|
89 |
+
num_outs=5),
|
90 |
+
rpn_head=dict(
|
91 |
+
type='mmdet.RPNHead',
|
92 |
+
in_channels=256,
|
93 |
+
feat_channels=256,
|
94 |
+
anchor_generator=dict(
|
95 |
+
type='mmdet.AnchorGenerator',
|
96 |
+
scales=[8],
|
97 |
+
ratios=[0.5, 1.0, 2.0],
|
98 |
+
strides=[4, 8, 16, 32, 64]),
|
99 |
+
bbox_coder=dict(
|
100 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
101 |
+
target_means=[.0, .0, .0, .0],
|
102 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
103 |
+
loss_cls=dict(
|
104 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
105 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
106 |
+
roi_head=dict(
|
107 |
+
type='mmdet.StandardRoIHead',
|
108 |
+
bbox_roi_extractor=dict(
|
109 |
+
type='mmdet.SingleRoIExtractor',
|
110 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
111 |
+
out_channels=256,
|
112 |
+
featmap_strides=[4, 8, 16, 32]),
|
113 |
+
bbox_head=dict(
|
114 |
+
type='mmdet.Shared2FCBBoxHead',
|
115 |
+
in_channels=256,
|
116 |
+
fc_out_channels=1024,
|
117 |
+
roi_feat_size=7,
|
118 |
+
num_classes=80,
|
119 |
+
bbox_coder=dict(
|
120 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
121 |
+
target_means=[0., 0., 0., 0.],
|
122 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
123 |
+
reg_class_agnostic=False,
|
124 |
+
loss_cls=dict(
|
125 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
126 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))),
|
127 |
+
# model training and testing settings
|
128 |
+
train_cfg=dict(
|
129 |
+
rpn=dict(
|
130 |
+
assigner=dict(
|
131 |
+
type='mmdet.MaxIoUAssigner',
|
132 |
+
pos_iou_thr=0.7,
|
133 |
+
neg_iou_thr=0.3,
|
134 |
+
min_pos_iou=0.3,
|
135 |
+
match_low_quality=True,
|
136 |
+
ignore_iof_thr=-1),
|
137 |
+
sampler=dict(
|
138 |
+
type='mmdet.RandomSampler',
|
139 |
+
num=256,
|
140 |
+
pos_fraction=0.5,
|
141 |
+
neg_pos_ub=-1,
|
142 |
+
add_gt_as_proposals=False),
|
143 |
+
allowed_border=-1,
|
144 |
+
pos_weight=-1,
|
145 |
+
debug=False),
|
146 |
+
rpn_proposal=dict(
|
147 |
+
nms_pre=2000,
|
148 |
+
max_per_img=1000,
|
149 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
150 |
+
min_bbox_size=0),
|
151 |
+
rcnn=dict(
|
152 |
+
assigner=dict(
|
153 |
+
type='mmdet.MaxIoUAssigner',
|
154 |
+
pos_iou_thr=0.5,
|
155 |
+
neg_iou_thr=0.5,
|
156 |
+
min_pos_iou=0.5,
|
157 |
+
match_low_quality=False,
|
158 |
+
ignore_iof_thr=-1),
|
159 |
+
sampler=dict(
|
160 |
+
type='mmdet.RandomSampler',
|
161 |
+
num=512,
|
162 |
+
pos_fraction=0.25,
|
163 |
+
neg_pos_ub=-1,
|
164 |
+
add_gt_as_proposals=True),
|
165 |
+
pos_weight=-1,
|
166 |
+
debug=False)),
|
167 |
+
test_cfg=dict(
|
168 |
+
rpn=dict(
|
169 |
+
nms_pre=1000,
|
170 |
+
max_per_img=1000,
|
171 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
172 |
+
min_bbox_size=0),
|
173 |
+
rcnn=dict(
|
174 |
+
score_thr=0.05,
|
175 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
176 |
+
max_per_img=100)
|
177 |
+
# soft-nms is also supported for rcnn testing
|
178 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
179 |
+
))
|
180 |
+
|
181 |
+
model_cfg = dict(
|
182 |
+
type='SegSAMDetPLer',
|
183 |
+
hyperparameters=dict(
|
184 |
+
optimizer=optimizer,
|
185 |
+
param_scheduler=param_scheduler,
|
186 |
+
evaluator=evaluator,
|
187 |
+
),
|
188 |
+
need_train_names=sub_model_train,
|
189 |
+
whole_model=model,
|
190 |
+
backbone=dict(
|
191 |
+
type='vit_h',
|
192 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
193 |
+
# type='vit_b',
|
194 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
195 |
+
)
|
196 |
+
)
|
197 |
+
|
198 |
+
task_name = 'whu_ins'
|
199 |
+
exp_name = 'E20230602_3'
|
200 |
+
logger = dict(
|
201 |
+
type='WandbLogger',
|
202 |
+
project=task_name,
|
203 |
+
group='samdet',
|
204 |
+
name=exp_name
|
205 |
+
)
|
206 |
+
# logger = None
|
207 |
+
|
208 |
+
callbacks = [
|
209 |
+
param_scheduler_callback,
|
210 |
+
dict(
|
211 |
+
type='ModelCheckpoint',
|
212 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
213 |
+
save_last=True,
|
214 |
+
mode='max',
|
215 |
+
monitor='valsegm_map_0',
|
216 |
+
save_top_k=2,
|
217 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
218 |
+
),
|
219 |
+
dict(
|
220 |
+
type='LearningRateMonitor',
|
221 |
+
logging_interval='step'
|
222 |
+
)
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
trainer_cfg = dict(
|
227 |
+
compiled_model=False,
|
228 |
+
accelerator="auto",
|
229 |
+
# strategy="auto",
|
230 |
+
# strategy="ddp",
|
231 |
+
strategy='ddp_find_unused_parameters_true',
|
232 |
+
# precision='32',
|
233 |
+
# precision='16-mixed',
|
234 |
+
devices=8,
|
235 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
236 |
+
# default_root_dir='results/tmp',
|
237 |
+
max_epochs=max_epochs,
|
238 |
+
logger=logger,
|
239 |
+
callbacks=callbacks,
|
240 |
+
log_every_n_steps=20,
|
241 |
+
check_val_every_n_epoch=3,
|
242 |
+
benchmark=True,
|
243 |
+
# sync_batchnorm=True,
|
244 |
+
# fast_dev_run=True,
|
245 |
+
|
246 |
+
# limit_train_batches=1,
|
247 |
+
# limit_val_batches=0,
|
248 |
+
# limit_test_batches=None,
|
249 |
+
# limit_predict_batches=None,
|
250 |
+
# overfit_batches=0.0,
|
251 |
+
|
252 |
+
# val_check_interval=None,
|
253 |
+
# num_sanity_val_steps=0,
|
254 |
+
# enable_checkpointing=None,
|
255 |
+
# enable_progress_bar=None,
|
256 |
+
# enable_model_summary=None,
|
257 |
+
# accumulate_grad_batches=32,
|
258 |
+
# gradient_clip_val=15,
|
259 |
+
# gradient_clip_algorithm='norm',
|
260 |
+
# deterministic=None,
|
261 |
+
# inference_mode: bool=True,
|
262 |
+
use_distributed_sampler=True,
|
263 |
+
# profiler="simple",
|
264 |
+
# detect_anomaly=False,
|
265 |
+
# barebones=False,
|
266 |
+
# plugins=None,
|
267 |
+
# reload_dataloaders_every_n_epochs=0,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
backend_args = None
|
272 |
+
train_pipeline = [
|
273 |
+
dict(type='mmdet.LoadImageFromFile'),
|
274 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
275 |
+
dict(type='mmdet.Resize', scale=image_size),
|
276 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
277 |
+
dict(type='mmdet.PackDetInputs')
|
278 |
+
]
|
279 |
+
|
280 |
+
test_pipeline = [
|
281 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
282 |
+
dict(type='mmdet.Resize', scale=image_size),
|
283 |
+
# If you don't have a gt annotation, delete the pipeline
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(
|
286 |
+
type='mmdet.PackDetInputs',
|
287 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
288 |
+
'scale_factor'))
|
289 |
+
]
|
290 |
+
|
291 |
+
|
292 |
+
train_batch_size_per_gpu = 4
|
293 |
+
train_num_workers = 4
|
294 |
+
test_batch_size_per_gpu = 4
|
295 |
+
test_num_workers = 4
|
296 |
+
persistent_workers = True
|
297 |
+
|
298 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
299 |
+
train_data_prefix = 'train/'
|
300 |
+
val_data_prefix = 'test/'
|
301 |
+
dataset_type = 'WHUInsSegDataset'
|
302 |
+
|
303 |
+
val_loader = dict(
|
304 |
+
batch_size=test_batch_size_per_gpu,
|
305 |
+
num_workers=test_num_workers,
|
306 |
+
persistent_workers=persistent_workers,
|
307 |
+
pin_memory=True,
|
308 |
+
dataset=dict(
|
309 |
+
type=dataset_type,
|
310 |
+
data_root=data_parent,
|
311 |
+
# ann_file='NWPU_instances_val.json',
|
312 |
+
# data_prefix=dict(img_path='positive image set'),
|
313 |
+
# ann_file='annotations/SSDD_instances_val.json',
|
314 |
+
# data_prefix=dict(img_path='imgs'),
|
315 |
+
ann_file='annotations/WHU_building_test.json',
|
316 |
+
data_prefix=dict(img_path=val_data_prefix + '/image'),
|
317 |
+
test_mode=True,
|
318 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
319 |
+
pipeline=test_pipeline,
|
320 |
+
backend_args=backend_args))
|
321 |
+
|
322 |
+
datamodule_cfg = dict(
|
323 |
+
type='PLDataModule',
|
324 |
+
train_loader=dict(
|
325 |
+
batch_size=train_batch_size_per_gpu,
|
326 |
+
num_workers=train_num_workers,
|
327 |
+
persistent_workers=persistent_workers,
|
328 |
+
pin_memory=True,
|
329 |
+
dataset=dict(
|
330 |
+
type=dataset_type,
|
331 |
+
data_root=data_parent,
|
332 |
+
# ann_file='NWPU_instances_train.json',
|
333 |
+
# data_prefix=dict(img_path='positive image set'),
|
334 |
+
# ann_file='annotations/SSDD_instances_train.json',
|
335 |
+
# data_prefix=dict(img_path='imgs'),
|
336 |
+
ann_file='annotations/WHU_building_train.json',
|
337 |
+
data_prefix=dict(img_path=train_data_prefix + '/image'),
|
338 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
339 |
+
pipeline=train_pipeline,
|
340 |
+
backend_args=backend_args)
|
341 |
+
),
|
342 |
+
val_loader=val_loader,
|
343 |
+
# test_loader=val_loader
|
344 |
+
predict_loader=val_loader
|
345 |
+
)
|
configs/rsprompter/samseg_mask2former_nwpu_config.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'sam_neck',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'sam_neck': {'lr_mult': 1},
|
11 |
+
'panoptic_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 500
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0001,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=1e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
evaluator_ = dict(
|
48 |
+
type='CocoPLMetric',
|
49 |
+
metric=['bbox', 'segm'],
|
50 |
+
proposal_nums=[1, 10, 100]
|
51 |
+
)
|
52 |
+
|
53 |
+
evaluator = dict(
|
54 |
+
val_evaluator=evaluator_,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
image_size = (1024, 1024)
|
59 |
+
|
60 |
+
data_preprocessor = dict(
|
61 |
+
type='mmdet.DetDataPreprocessor',
|
62 |
+
mean=[123.675, 116.28, 103.53],
|
63 |
+
std=[58.395, 57.12, 57.375],
|
64 |
+
bgr_to_rgb=True,
|
65 |
+
pad_size_divisor=32,
|
66 |
+
pad_mask=True,
|
67 |
+
mask_pad_value=0,
|
68 |
+
)
|
69 |
+
|
70 |
+
num_things_classes = 10
|
71 |
+
num_stuff_classes = 0
|
72 |
+
num_classes = num_things_classes + num_stuff_classes
|
73 |
+
num_queries = 90
|
74 |
+
|
75 |
+
model_cfg = dict(
|
76 |
+
type='SegSAMPLer',
|
77 |
+
hyperparameters=dict(
|
78 |
+
optimizer=optimizer,
|
79 |
+
param_scheduler=param_scheduler,
|
80 |
+
evaluator=evaluator,
|
81 |
+
),
|
82 |
+
need_train_names=sub_model_train,
|
83 |
+
data_preprocessor=data_preprocessor,
|
84 |
+
backbone=dict(
|
85 |
+
type='vit_h',
|
86 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
87 |
+
# type='vit_b',
|
88 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
89 |
+
),
|
90 |
+
sam_neck=dict(
|
91 |
+
type='SAMAggregatorNeck',
|
92 |
+
in_channels=[1280] * 32,
|
93 |
+
# in_channels=[768] * 12,
|
94 |
+
inner_channels=32,
|
95 |
+
selected_channels=range(8, 32, 3),
|
96 |
+
# selected_channels=range(4, 12, 2),
|
97 |
+
out_channels=256,
|
98 |
+
up_sample_scale=4,
|
99 |
+
),
|
100 |
+
panoptic_head=dict(
|
101 |
+
type='mmdet.Mask2FormerHead',
|
102 |
+
in_channels=[256, 256, 256], # pass to pixel_decoder inside
|
103 |
+
strides=[8, 16, 32],
|
104 |
+
feat_channels=256,
|
105 |
+
out_channels=256,
|
106 |
+
num_things_classes=num_things_classes,
|
107 |
+
num_stuff_classes=num_stuff_classes,
|
108 |
+
num_queries=num_queries,
|
109 |
+
num_transformer_feat_level=3,
|
110 |
+
pixel_decoder=dict(
|
111 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
112 |
+
num_outs=3,
|
113 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
114 |
+
act_cfg=dict(type='ReLU'),
|
115 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
116 |
+
# num_layers=6,
|
117 |
+
num_layers=2,
|
118 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
119 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
120 |
+
embed_dims=256,
|
121 |
+
num_heads=8,
|
122 |
+
num_levels=3,
|
123 |
+
num_points=4,
|
124 |
+
dropout=0.1,
|
125 |
+
batch_first=True),
|
126 |
+
ffn_cfg=dict(
|
127 |
+
embed_dims=256,
|
128 |
+
feedforward_channels=1024,
|
129 |
+
num_fcs=2,
|
130 |
+
ffn_drop=0.1,
|
131 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
132 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
133 |
+
enforce_decoder_input_project=False,
|
134 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
135 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
136 |
+
return_intermediate=True,
|
137 |
+
# num_layers=9,
|
138 |
+
num_layers=3,
|
139 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
140 |
+
self_attn_cfg=dict( # MultiheadAttention
|
141 |
+
embed_dims=256,
|
142 |
+
num_heads=8,
|
143 |
+
dropout=0.1,
|
144 |
+
batch_first=True),
|
145 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
146 |
+
embed_dims=256,
|
147 |
+
num_heads=8,
|
148 |
+
dropout=0.1,
|
149 |
+
batch_first=True),
|
150 |
+
ffn_cfg=dict(
|
151 |
+
embed_dims=256,
|
152 |
+
feedforward_channels=2048,
|
153 |
+
num_fcs=2,
|
154 |
+
ffn_drop=0.1,
|
155 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
156 |
+
init_cfg=None),
|
157 |
+
loss_cls=dict(
|
158 |
+
type='mmdet.CrossEntropyLoss',
|
159 |
+
use_sigmoid=False,
|
160 |
+
loss_weight=2.0,
|
161 |
+
reduction='mean',
|
162 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
163 |
+
loss_mask=dict(
|
164 |
+
type='mmdet.CrossEntropyLoss',
|
165 |
+
use_sigmoid=True,
|
166 |
+
reduction='mean',
|
167 |
+
loss_weight=5.0),
|
168 |
+
loss_dice=dict(
|
169 |
+
type='mmdet.DiceLoss',
|
170 |
+
use_sigmoid=True,
|
171 |
+
activate=True,
|
172 |
+
reduction='mean',
|
173 |
+
naive_dice=True,
|
174 |
+
eps=1.0,
|
175 |
+
loss_weight=5.0)),
|
176 |
+
panoptic_fusion_head=dict(
|
177 |
+
type='mmdet.MaskFormerFusionHead',
|
178 |
+
num_things_classes=num_things_classes,
|
179 |
+
num_stuff_classes=num_stuff_classes,
|
180 |
+
loss_panoptic=None,
|
181 |
+
init_cfg=None),
|
182 |
+
train_cfg=dict(
|
183 |
+
num_points=12544,
|
184 |
+
oversample_ratio=3.0,
|
185 |
+
importance_sample_ratio=0.75,
|
186 |
+
assigner=dict(
|
187 |
+
type='mmdet.HungarianAssigner',
|
188 |
+
match_costs=[
|
189 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
190 |
+
dict(
|
191 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
192 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
193 |
+
]),
|
194 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
195 |
+
test_cfg=dict(
|
196 |
+
panoptic_on=False,
|
197 |
+
# For now, the dataset does not support
|
198 |
+
# evaluating semantic segmentation metric.
|
199 |
+
semantic_on=False,
|
200 |
+
instance_on=True,
|
201 |
+
# max_per_image is for instance segmentation.
|
202 |
+
max_per_image=num_queries,
|
203 |
+
iou_thr=0.8,
|
204 |
+
# In Mask2Former's panoptic postprocessing,
|
205 |
+
# it will filter mask area where score is less than 0.5 .
|
206 |
+
filter_low_score=True),
|
207 |
+
init_cfg=None)
|
208 |
+
|
209 |
+
|
210 |
+
task_name = 'nwpu_ins'
|
211 |
+
exp_name = 'E20230604_5'
|
212 |
+
logger = dict(
|
213 |
+
type='WandbLogger',
|
214 |
+
project=task_name,
|
215 |
+
group='samseg-mask2former',
|
216 |
+
name=exp_name
|
217 |
+
)
|
218 |
+
# logger = None
|
219 |
+
|
220 |
+
callbacks = [
|
221 |
+
param_scheduler_callback,
|
222 |
+
dict(
|
223 |
+
type='ModelCheckpoint',
|
224 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
225 |
+
save_last=True,
|
226 |
+
mode='max',
|
227 |
+
monitor='valsegm_map_0',
|
228 |
+
save_top_k=2,
|
229 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
230 |
+
),
|
231 |
+
dict(
|
232 |
+
type='LearningRateMonitor',
|
233 |
+
logging_interval='step'
|
234 |
+
)
|
235 |
+
]
|
236 |
+
|
237 |
+
|
238 |
+
trainer_cfg = dict(
|
239 |
+
compiled_model=False,
|
240 |
+
accelerator="auto",
|
241 |
+
strategy="auto",
|
242 |
+
# strategy="ddp",
|
243 |
+
# strategy='ddp_find_unused_parameters_true',
|
244 |
+
# precision='32',
|
245 |
+
# precision='16-mixed',
|
246 |
+
devices=8,
|
247 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
248 |
+
# default_root_dir='results/tmp',
|
249 |
+
max_epochs=max_epochs,
|
250 |
+
logger=logger,
|
251 |
+
callbacks=callbacks,
|
252 |
+
log_every_n_steps=5,
|
253 |
+
check_val_every_n_epoch=5,
|
254 |
+
benchmark=True,
|
255 |
+
# sync_batchnorm=True,
|
256 |
+
# fast_dev_run=True,
|
257 |
+
|
258 |
+
# limit_train_batches=1,
|
259 |
+
# limit_val_batches=0,
|
260 |
+
# limit_test_batches=None,
|
261 |
+
# limit_predict_batches=None,
|
262 |
+
# overfit_batches=0.0,
|
263 |
+
|
264 |
+
# val_check_interval=None,
|
265 |
+
# num_sanity_val_steps=0,
|
266 |
+
# enable_checkpointing=None,
|
267 |
+
# enable_progress_bar=None,
|
268 |
+
# enable_model_summary=None,
|
269 |
+
# accumulate_grad_batches=32,
|
270 |
+
# gradient_clip_val=15,
|
271 |
+
# gradient_clip_algorithm='norm',
|
272 |
+
# deterministic=None,
|
273 |
+
# inference_mode: bool=True,
|
274 |
+
use_distributed_sampler=True,
|
275 |
+
# profiler="simple",
|
276 |
+
# detect_anomaly=False,
|
277 |
+
# barebones=False,
|
278 |
+
# plugins=None,
|
279 |
+
# reload_dataloaders_every_n_epochs=0,
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
backend_args = None
|
284 |
+
train_pipeline = [
|
285 |
+
dict(type='mmdet.LoadImageFromFile'),
|
286 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
287 |
+
dict(type='mmdet.Resize', scale=image_size),
|
288 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
289 |
+
dict(type='mmdet.PackDetInputs')
|
290 |
+
]
|
291 |
+
|
292 |
+
test_pipeline = [
|
293 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
294 |
+
dict(type='mmdet.Resize', scale=image_size),
|
295 |
+
# If you don't have a gt annotation, delete the pipeline
|
296 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
297 |
+
dict(
|
298 |
+
type='mmdet.PackDetInputs',
|
299 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
300 |
+
'scale_factor'))
|
301 |
+
]
|
302 |
+
|
303 |
+
|
304 |
+
train_batch_size_per_gpu = 4
|
305 |
+
train_num_workers = 4
|
306 |
+
test_batch_size_per_gpu = 4
|
307 |
+
test_num_workers = 4
|
308 |
+
persistent_workers = True
|
309 |
+
|
310 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
311 |
+
train_data_prefix = ''
|
312 |
+
val_data_prefix = ''
|
313 |
+
|
314 |
+
dataset_type = 'NWPUInsSegDataset'
|
315 |
+
|
316 |
+
val_loader = dict(
|
317 |
+
batch_size=test_batch_size_per_gpu,
|
318 |
+
num_workers=test_num_workers,
|
319 |
+
persistent_workers=persistent_workers,
|
320 |
+
pin_memory=True,
|
321 |
+
dataset=dict(
|
322 |
+
type=dataset_type,
|
323 |
+
data_root=data_parent,
|
324 |
+
ann_file='NWPU_instances_val.json',
|
325 |
+
data_prefix=dict(img_path='positive image set'),
|
326 |
+
test_mode=True,
|
327 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
328 |
+
pipeline=test_pipeline,
|
329 |
+
backend_args=backend_args))
|
330 |
+
|
331 |
+
datamodule_cfg = dict(
|
332 |
+
type='PLDataModule',
|
333 |
+
train_loader=dict(
|
334 |
+
batch_size=train_batch_size_per_gpu,
|
335 |
+
num_workers=train_num_workers,
|
336 |
+
persistent_workers=persistent_workers,
|
337 |
+
pin_memory=True,
|
338 |
+
dataset=dict(
|
339 |
+
type=dataset_type,
|
340 |
+
data_root=data_parent,
|
341 |
+
ann_file='NWPU_instances_train.json',
|
342 |
+
data_prefix=dict(img_path='positive image set'),
|
343 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
344 |
+
pipeline=train_pipeline,
|
345 |
+
backend_args=backend_args)
|
346 |
+
),
|
347 |
+
val_loader=val_loader,
|
348 |
+
# test_loader=val_loader
|
349 |
+
predict_loader=val_loader
|
350 |
+
)
|
configs/rsprompter/samseg_mask2former_ssdd_config.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'sam_neck',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'sam_neck': {'lr_mult': 1},
|
11 |
+
'panoptic_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 600
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0005,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=5e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
evaluator_ = dict(
|
48 |
+
type='CocoPLMetric',
|
49 |
+
metric=['bbox', 'segm'],
|
50 |
+
proposal_nums=[1, 10, 100]
|
51 |
+
)
|
52 |
+
|
53 |
+
evaluator = dict(
|
54 |
+
val_evaluator=evaluator_,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
image_size = (1024, 1024)
|
59 |
+
|
60 |
+
data_preprocessor = dict(
|
61 |
+
type='mmdet.DetDataPreprocessor',
|
62 |
+
mean=[123.675, 116.28, 103.53],
|
63 |
+
std=[58.395, 57.12, 57.375],
|
64 |
+
bgr_to_rgb=True,
|
65 |
+
pad_size_divisor=32,
|
66 |
+
pad_mask=True,
|
67 |
+
mask_pad_value=0,
|
68 |
+
)
|
69 |
+
|
70 |
+
num_things_classes = 1
|
71 |
+
num_stuff_classes = 0
|
72 |
+
num_classes = num_things_classes + num_stuff_classes
|
73 |
+
num_queries = 30
|
74 |
+
|
75 |
+
model_cfg = dict(
|
76 |
+
type='SegSAMPLer',
|
77 |
+
hyperparameters=dict(
|
78 |
+
optimizer=optimizer,
|
79 |
+
param_scheduler=param_scheduler,
|
80 |
+
evaluator=evaluator,
|
81 |
+
),
|
82 |
+
need_train_names=sub_model_train,
|
83 |
+
data_preprocessor=data_preprocessor,
|
84 |
+
backbone=dict(
|
85 |
+
type='vit_h',
|
86 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
87 |
+
# type='vit_b',
|
88 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
89 |
+
),
|
90 |
+
sam_neck=dict(
|
91 |
+
type='SAMAggregatorNeck',
|
92 |
+
in_channels=[1280] * 32,
|
93 |
+
# in_channels=[768] * 12,
|
94 |
+
inner_channels=32,
|
95 |
+
selected_channels=range(4, 32, 2),
|
96 |
+
# selected_channels=range(4, 12, 2),
|
97 |
+
out_channels=256,
|
98 |
+
up_sample_scale=4,
|
99 |
+
),
|
100 |
+
panoptic_head=dict(
|
101 |
+
type='mmdet.Mask2FormerHead',
|
102 |
+
in_channels=[256, 256, 256], # pass to pixel_decoder inside
|
103 |
+
strides=[8, 16, 32],
|
104 |
+
feat_channels=256,
|
105 |
+
out_channels=256,
|
106 |
+
num_things_classes=num_things_classes,
|
107 |
+
num_stuff_classes=num_stuff_classes,
|
108 |
+
num_queries=num_queries,
|
109 |
+
num_transformer_feat_level=3,
|
110 |
+
pixel_decoder=dict(
|
111 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
112 |
+
num_outs=3,
|
113 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
114 |
+
act_cfg=dict(type='ReLU'),
|
115 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
116 |
+
# num_layers=6,
|
117 |
+
num_layers=2,
|
118 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
119 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
120 |
+
embed_dims=256,
|
121 |
+
num_heads=8,
|
122 |
+
num_levels=3,
|
123 |
+
num_points=4,
|
124 |
+
dropout=0.1,
|
125 |
+
batch_first=True),
|
126 |
+
ffn_cfg=dict(
|
127 |
+
embed_dims=256,
|
128 |
+
feedforward_channels=1024,
|
129 |
+
num_fcs=2,
|
130 |
+
ffn_drop=0.1,
|
131 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
132 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
133 |
+
enforce_decoder_input_project=False,
|
134 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
135 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
136 |
+
return_intermediate=True,
|
137 |
+
# num_layers=9,
|
138 |
+
num_layers=3,
|
139 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
140 |
+
self_attn_cfg=dict( # MultiheadAttention
|
141 |
+
embed_dims=256,
|
142 |
+
num_heads=8,
|
143 |
+
dropout=0.1,
|
144 |
+
batch_first=True),
|
145 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
146 |
+
embed_dims=256,
|
147 |
+
num_heads=8,
|
148 |
+
dropout=0.1,
|
149 |
+
batch_first=True),
|
150 |
+
ffn_cfg=dict(
|
151 |
+
embed_dims=256,
|
152 |
+
feedforward_channels=2048,
|
153 |
+
num_fcs=2,
|
154 |
+
ffn_drop=0.1,
|
155 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
156 |
+
init_cfg=None),
|
157 |
+
loss_cls=dict(
|
158 |
+
type='mmdet.CrossEntropyLoss',
|
159 |
+
use_sigmoid=False,
|
160 |
+
loss_weight=2.0,
|
161 |
+
reduction='mean',
|
162 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
163 |
+
loss_mask=dict(
|
164 |
+
type='mmdet.CrossEntropyLoss',
|
165 |
+
use_sigmoid=True,
|
166 |
+
reduction='mean',
|
167 |
+
loss_weight=5.0),
|
168 |
+
loss_dice=dict(
|
169 |
+
type='mmdet.DiceLoss',
|
170 |
+
use_sigmoid=True,
|
171 |
+
activate=True,
|
172 |
+
reduction='mean',
|
173 |
+
naive_dice=True,
|
174 |
+
eps=1.0,
|
175 |
+
loss_weight=5.0)),
|
176 |
+
panoptic_fusion_head=dict(
|
177 |
+
type='mmdet.MaskFormerFusionHead',
|
178 |
+
num_things_classes=num_things_classes,
|
179 |
+
num_stuff_classes=num_stuff_classes,
|
180 |
+
loss_panoptic=None,
|
181 |
+
init_cfg=None),
|
182 |
+
train_cfg=dict(
|
183 |
+
num_points=12544,
|
184 |
+
oversample_ratio=3.0,
|
185 |
+
importance_sample_ratio=0.75,
|
186 |
+
assigner=dict(
|
187 |
+
type='mmdet.HungarianAssigner',
|
188 |
+
match_costs=[
|
189 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
190 |
+
dict(
|
191 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
192 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
193 |
+
]),
|
194 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
195 |
+
test_cfg=dict(
|
196 |
+
panoptic_on=False,
|
197 |
+
# For now, the dataset does not support
|
198 |
+
# evaluating semantic segmentation metric.
|
199 |
+
semantic_on=False,
|
200 |
+
instance_on=True,
|
201 |
+
# max_per_image is for instance segmentation.
|
202 |
+
max_per_image=num_queries,
|
203 |
+
iou_thr=0.8,
|
204 |
+
# In Mask2Former's panoptic postprocessing,
|
205 |
+
# it will filter mask area where score is less than 0.5 .
|
206 |
+
filter_low_score=True),
|
207 |
+
init_cfg=None)
|
208 |
+
|
209 |
+
task_name = 'ssdd_ins'
|
210 |
+
exp_name = 'E20230531_1'
|
211 |
+
logger = dict(
|
212 |
+
type='WandbLogger',
|
213 |
+
project=task_name,
|
214 |
+
group='samcls-mask2former',
|
215 |
+
name=exp_name
|
216 |
+
)
|
217 |
+
# logger = None
|
218 |
+
|
219 |
+
callbacks = [
|
220 |
+
param_scheduler_callback,
|
221 |
+
dict(
|
222 |
+
type='ModelCheckpoint',
|
223 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
224 |
+
save_last=True,
|
225 |
+
mode='max',
|
226 |
+
monitor='valsegm_map_0',
|
227 |
+
save_top_k=2,
|
228 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
229 |
+
),
|
230 |
+
dict(
|
231 |
+
type='LearningRateMonitor',
|
232 |
+
logging_interval='step'
|
233 |
+
)
|
234 |
+
]
|
235 |
+
|
236 |
+
|
237 |
+
trainer_cfg = dict(
|
238 |
+
compiled_model=False,
|
239 |
+
accelerator="auto",
|
240 |
+
strategy="auto",
|
241 |
+
# strategy="ddp",
|
242 |
+
# strategy='ddp_find_unused_parameters_true',
|
243 |
+
# precision='32',
|
244 |
+
# precision='16-mixed',
|
245 |
+
devices=8,
|
246 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
247 |
+
# default_root_dir='results/tmp',
|
248 |
+
max_epochs=max_epochs,
|
249 |
+
logger=logger,
|
250 |
+
callbacks=callbacks,
|
251 |
+
log_every_n_steps=5,
|
252 |
+
check_val_every_n_epoch=5,
|
253 |
+
benchmark=True,
|
254 |
+
# sync_batchnorm=True,
|
255 |
+
# fast_dev_run=True,
|
256 |
+
|
257 |
+
# limit_train_batches=1,
|
258 |
+
# limit_val_batches=0,
|
259 |
+
# limit_test_batches=None,
|
260 |
+
# limit_predict_batches=None,
|
261 |
+
# overfit_batches=0.0,
|
262 |
+
|
263 |
+
# val_check_interval=None,
|
264 |
+
# num_sanity_val_steps=0,
|
265 |
+
# enable_checkpointing=None,
|
266 |
+
# enable_progress_bar=None,
|
267 |
+
# enable_model_summary=None,
|
268 |
+
# accumulate_grad_batches=32,
|
269 |
+
# gradient_clip_val=15,
|
270 |
+
# gradient_clip_algorithm='norm',
|
271 |
+
# deterministic=None,
|
272 |
+
# inference_mode: bool=True,
|
273 |
+
use_distributed_sampler=True,
|
274 |
+
# profiler="simple",
|
275 |
+
# detect_anomaly=False,
|
276 |
+
# barebones=False,
|
277 |
+
# plugins=None,
|
278 |
+
# reload_dataloaders_every_n_epochs=0,
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
backend_args = None
|
283 |
+
train_pipeline = [
|
284 |
+
dict(type='mmdet.LoadImageFromFile'),
|
285 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
286 |
+
dict(type='mmdet.Resize', scale=image_size),
|
287 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
288 |
+
dict(type='mmdet.PackDetInputs')
|
289 |
+
]
|
290 |
+
|
291 |
+
test_pipeline = [
|
292 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
293 |
+
dict(type='mmdet.Resize', scale=image_size),
|
294 |
+
# If you don't have a gt annotation, delete the pipeline
|
295 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
296 |
+
dict(
|
297 |
+
type='mmdet.PackDetInputs',
|
298 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
299 |
+
'scale_factor'))
|
300 |
+
]
|
301 |
+
|
302 |
+
|
303 |
+
train_batch_size_per_gpu = 6
|
304 |
+
train_num_workers = 4
|
305 |
+
test_batch_size_per_gpu = 6
|
306 |
+
test_num_workers = 4
|
307 |
+
persistent_workers = True
|
308 |
+
|
309 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
310 |
+
dataset_type = 'SSDDInsSegDataset'
|
311 |
+
|
312 |
+
val_loader = dict(
|
313 |
+
batch_size=test_batch_size_per_gpu,
|
314 |
+
num_workers=test_num_workers,
|
315 |
+
persistent_workers=persistent_workers,
|
316 |
+
pin_memory=True,
|
317 |
+
dataset=dict(
|
318 |
+
type=dataset_type,
|
319 |
+
data_root=data_parent,
|
320 |
+
ann_file='annotations/SSDD_instances_val.json',
|
321 |
+
data_prefix=dict(img_path='imgs'),
|
322 |
+
test_mode=True,
|
323 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
324 |
+
pipeline=test_pipeline,
|
325 |
+
backend_args=backend_args))
|
326 |
+
|
327 |
+
datamodule_cfg = dict(
|
328 |
+
type='PLDataModule',
|
329 |
+
train_loader=dict(
|
330 |
+
batch_size=train_batch_size_per_gpu,
|
331 |
+
num_workers=train_num_workers,
|
332 |
+
persistent_workers=persistent_workers,
|
333 |
+
pin_memory=True,
|
334 |
+
dataset=dict(
|
335 |
+
type=dataset_type,
|
336 |
+
data_root=data_parent,
|
337 |
+
ann_file='annotations/SSDD_instances_train.json',
|
338 |
+
data_prefix=dict(img_path='imgs'),
|
339 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
340 |
+
pipeline=train_pipeline,
|
341 |
+
backend_args=backend_args)
|
342 |
+
),
|
343 |
+
val_loader=val_loader,
|
344 |
+
# test_loader=val_loader
|
345 |
+
predict_loader=val_loader
|
346 |
+
)
|
configs/rsprompter/samseg_mask2former_whu_config.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'sam_neck',
|
6 |
+
'data_preprocessor'
|
7 |
+
]
|
8 |
+
|
9 |
+
sub_model_optim = {
|
10 |
+
'sam_neck': {'lr_mult': 1},
|
11 |
+
'panoptic_head': {'lr_mult': 1},
|
12 |
+
}
|
13 |
+
|
14 |
+
max_epochs = 400
|
15 |
+
|
16 |
+
optimizer = dict(
|
17 |
+
type='AdamW',
|
18 |
+
sub_model=sub_model_optim,
|
19 |
+
lr=0.0005,
|
20 |
+
weight_decay=1e-3
|
21 |
+
)
|
22 |
+
|
23 |
+
param_scheduler = [
|
24 |
+
# warm up learning rate scheduler
|
25 |
+
dict(
|
26 |
+
type='LinearLR',
|
27 |
+
start_factor=5e-4,
|
28 |
+
by_epoch=True,
|
29 |
+
begin=0,
|
30 |
+
end=1,
|
31 |
+
# update by iter
|
32 |
+
convert_to_iter_based=True),
|
33 |
+
# main learning rate scheduler
|
34 |
+
dict(
|
35 |
+
type='CosineAnnealingLR',
|
36 |
+
T_max=max_epochs,
|
37 |
+
by_epoch=True,
|
38 |
+
begin=1,
|
39 |
+
end=max_epochs,
|
40 |
+
),
|
41 |
+
]
|
42 |
+
|
43 |
+
param_scheduler_callback = dict(
|
44 |
+
type='ParamSchedulerHook'
|
45 |
+
)
|
46 |
+
|
47 |
+
evaluator_ = dict(
|
48 |
+
type='CocoPLMetric',
|
49 |
+
metric=['bbox', 'segm'],
|
50 |
+
proposal_nums=[1, 10, 100]
|
51 |
+
)
|
52 |
+
|
53 |
+
evaluator = dict(
|
54 |
+
# train_evaluator=evaluator_,
|
55 |
+
val_evaluator=evaluator_,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
image_size = (1024, 1024)
|
60 |
+
|
61 |
+
data_preprocessor = dict(
|
62 |
+
type='mmdet.DetDataPreprocessor',
|
63 |
+
mean=[123.675, 116.28, 103.53],
|
64 |
+
std=[58.395, 57.12, 57.375],
|
65 |
+
bgr_to_rgb=True,
|
66 |
+
pad_size_divisor=32,
|
67 |
+
pad_mask=True,
|
68 |
+
mask_pad_value=0,
|
69 |
+
)
|
70 |
+
|
71 |
+
num_things_classes = 1
|
72 |
+
num_stuff_classes = 0
|
73 |
+
num_classes = num_things_classes + num_stuff_classes
|
74 |
+
|
75 |
+
num_queries = 100
|
76 |
+
model_cfg = dict(
|
77 |
+
type='SegSAMPLer',
|
78 |
+
hyperparameters=dict(
|
79 |
+
optimizer=optimizer,
|
80 |
+
param_scheduler=param_scheduler,
|
81 |
+
evaluator=evaluator,
|
82 |
+
),
|
83 |
+
need_train_names=sub_model_train,
|
84 |
+
data_preprocessor=data_preprocessor,
|
85 |
+
backbone=dict(
|
86 |
+
type='vit_h',
|
87 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
88 |
+
# type='vit_b',
|
89 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
90 |
+
),
|
91 |
+
sam_neck=dict(
|
92 |
+
type='SAMAggregatorNeck',
|
93 |
+
in_channels=[1280] * 32,
|
94 |
+
# in_channels=[768] * 12,
|
95 |
+
inner_channels=32,
|
96 |
+
selected_channels=range(4, 32, 2),
|
97 |
+
# selected_channels=range(4, 12, 2),
|
98 |
+
out_channels=256,
|
99 |
+
up_sample_scale=4,
|
100 |
+
),
|
101 |
+
panoptic_head=dict(
|
102 |
+
type='mmdet.Mask2FormerHead',
|
103 |
+
in_channels=[256, 256, 256], # pass to pixel_decoder inside
|
104 |
+
strides=[8, 16, 32],
|
105 |
+
feat_channels=256,
|
106 |
+
out_channels=256,
|
107 |
+
num_things_classes=num_things_classes,
|
108 |
+
num_stuff_classes=num_stuff_classes,
|
109 |
+
num_queries=num_queries,
|
110 |
+
num_transformer_feat_level=3,
|
111 |
+
pixel_decoder=dict(
|
112 |
+
type='mmdet.MSDeformAttnPixelDecoder',
|
113 |
+
num_outs=3,
|
114 |
+
norm_cfg=dict(type='GN', num_groups=32),
|
115 |
+
act_cfg=dict(type='ReLU'),
|
116 |
+
encoder=dict( # DeformableDetrTransformerEncoder
|
117 |
+
# num_layers=6,
|
118 |
+
num_layers=2,
|
119 |
+
layer_cfg=dict( # DeformableDetrTransformerEncoderLayer
|
120 |
+
self_attn_cfg=dict( # MultiScaleDeformableAttention
|
121 |
+
embed_dims=256,
|
122 |
+
num_heads=8,
|
123 |
+
num_levels=3,
|
124 |
+
num_points=4,
|
125 |
+
dropout=0.1,
|
126 |
+
batch_first=True),
|
127 |
+
ffn_cfg=dict(
|
128 |
+
embed_dims=256,
|
129 |
+
feedforward_channels=1024,
|
130 |
+
num_fcs=2,
|
131 |
+
ffn_drop=0.1,
|
132 |
+
act_cfg=dict(type='ReLU', inplace=True)))),
|
133 |
+
positional_encoding=dict(num_feats=128, normalize=True)),
|
134 |
+
enforce_decoder_input_project=False,
|
135 |
+
positional_encoding=dict(num_feats=128, normalize=True),
|
136 |
+
transformer_decoder=dict( # Mask2FormerTransformerDecoder
|
137 |
+
return_intermediate=True,
|
138 |
+
# num_layers=9,
|
139 |
+
num_layers=3,
|
140 |
+
layer_cfg=dict( # Mask2FormerTransformerDecoderLayer
|
141 |
+
self_attn_cfg=dict( # MultiheadAttention
|
142 |
+
embed_dims=256,
|
143 |
+
num_heads=8,
|
144 |
+
dropout=0.1,
|
145 |
+
batch_first=True),
|
146 |
+
cross_attn_cfg=dict( # MultiheadAttention
|
147 |
+
embed_dims=256,
|
148 |
+
num_heads=8,
|
149 |
+
dropout=0.1,
|
150 |
+
batch_first=True),
|
151 |
+
ffn_cfg=dict(
|
152 |
+
embed_dims=256,
|
153 |
+
feedforward_channels=2048,
|
154 |
+
num_fcs=2,
|
155 |
+
ffn_drop=0.1,
|
156 |
+
act_cfg=dict(type='ReLU', inplace=True))),
|
157 |
+
init_cfg=None),
|
158 |
+
loss_cls=dict(
|
159 |
+
type='mmdet.CrossEntropyLoss',
|
160 |
+
use_sigmoid=False,
|
161 |
+
loss_weight=2.0,
|
162 |
+
reduction='mean',
|
163 |
+
class_weight=[1.0] * num_classes + [0.1]),
|
164 |
+
loss_mask=dict(
|
165 |
+
type='mmdet.CrossEntropyLoss',
|
166 |
+
use_sigmoid=True,
|
167 |
+
reduction='mean',
|
168 |
+
loss_weight=5.0),
|
169 |
+
loss_dice=dict(
|
170 |
+
type='mmdet.DiceLoss',
|
171 |
+
use_sigmoid=True,
|
172 |
+
activate=True,
|
173 |
+
reduction='mean',
|
174 |
+
naive_dice=True,
|
175 |
+
eps=1.0,
|
176 |
+
loss_weight=5.0)),
|
177 |
+
panoptic_fusion_head=dict(
|
178 |
+
type='mmdet.MaskFormerFusionHead',
|
179 |
+
num_things_classes=num_things_classes,
|
180 |
+
num_stuff_classes=num_stuff_classes,
|
181 |
+
loss_panoptic=None,
|
182 |
+
init_cfg=None),
|
183 |
+
train_cfg=dict(
|
184 |
+
num_points=12544,
|
185 |
+
oversample_ratio=3.0,
|
186 |
+
importance_sample_ratio=0.75,
|
187 |
+
assigner=dict(
|
188 |
+
type='mmdet.HungarianAssigner',
|
189 |
+
match_costs=[
|
190 |
+
dict(type='mmdet.ClassificationCost', weight=2.0),
|
191 |
+
dict(
|
192 |
+
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
|
193 |
+
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0)
|
194 |
+
]),
|
195 |
+
sampler=dict(type='mmdet.MaskPseudoSampler')),
|
196 |
+
test_cfg=dict(
|
197 |
+
panoptic_on=False,
|
198 |
+
# For now, the dataset does not support
|
199 |
+
# evaluating semantic segmentation metric.
|
200 |
+
semantic_on=False,
|
201 |
+
instance_on=True,
|
202 |
+
# max_per_image is for instance segmentation.
|
203 |
+
max_per_image=num_queries,
|
204 |
+
iou_thr=0.8,
|
205 |
+
# In Mask2Former's panoptic postprocessing,
|
206 |
+
# it will filter mask area where score is less than 0.5 .
|
207 |
+
filter_low_score=True),
|
208 |
+
init_cfg=None)
|
209 |
+
|
210 |
+
task_name = 'whu_ins'
|
211 |
+
exp_name = 'E20230531_2'
|
212 |
+
logger = dict(
|
213 |
+
type='WandbLogger',
|
214 |
+
project=task_name,
|
215 |
+
group='samcls-mask2former',
|
216 |
+
name=exp_name
|
217 |
+
)
|
218 |
+
# logger = None
|
219 |
+
|
220 |
+
callbacks = [
|
221 |
+
param_scheduler_callback,
|
222 |
+
dict(
|
223 |
+
type='ModelCheckpoint',
|
224 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
225 |
+
save_last=True,
|
226 |
+
mode='max',
|
227 |
+
monitor='valsegm_map_0',
|
228 |
+
save_top_k=2,
|
229 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
230 |
+
),
|
231 |
+
dict(
|
232 |
+
type='LearningRateMonitor',
|
233 |
+
logging_interval='step'
|
234 |
+
)
|
235 |
+
]
|
236 |
+
|
237 |
+
|
238 |
+
trainer_cfg = dict(
|
239 |
+
compiled_model=False,
|
240 |
+
accelerator="auto",
|
241 |
+
strategy="auto",
|
242 |
+
# strategy="ddp",
|
243 |
+
# strategy='ddp_find_unused_parameters_true',
|
244 |
+
# precision='32',
|
245 |
+
# precision='16-mixed',
|
246 |
+
devices=8,
|
247 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
248 |
+
# default_root_dir='results/tmp',
|
249 |
+
max_epochs=max_epochs,
|
250 |
+
logger=logger,
|
251 |
+
callbacks=callbacks,
|
252 |
+
log_every_n_steps=20,
|
253 |
+
check_val_every_n_epoch=5,
|
254 |
+
benchmark=True,
|
255 |
+
# sync_batchnorm=True,
|
256 |
+
# fast_dev_run=True,
|
257 |
+
|
258 |
+
# limit_train_batches=1,
|
259 |
+
# limit_val_batches=0,
|
260 |
+
# limit_test_batches=None,
|
261 |
+
# limit_predict_batches=None,
|
262 |
+
# overfit_batches=0.0,
|
263 |
+
|
264 |
+
# val_check_interval=None,
|
265 |
+
# num_sanity_val_steps=0,
|
266 |
+
# enable_checkpointing=None,
|
267 |
+
# enable_progress_bar=None,
|
268 |
+
# enable_model_summary=None,
|
269 |
+
# accumulate_grad_batches=32,
|
270 |
+
# gradient_clip_val=15,
|
271 |
+
# gradient_clip_algorithm='norm',
|
272 |
+
# deterministic=None,
|
273 |
+
# inference_mode: bool=True,
|
274 |
+
use_distributed_sampler=True,
|
275 |
+
# profiler="simple",
|
276 |
+
# detect_anomaly=False,
|
277 |
+
# barebones=False,
|
278 |
+
# plugins=None,
|
279 |
+
# reload_dataloaders_every_n_epochs=0,
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
backend_args = None
|
284 |
+
train_pipeline = [
|
285 |
+
dict(type='mmdet.LoadImageFromFile'),
|
286 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
287 |
+
dict(type='mmdet.Resize', scale=image_size),
|
288 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
289 |
+
dict(type='mmdet.PackDetInputs')
|
290 |
+
]
|
291 |
+
|
292 |
+
test_pipeline = [
|
293 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
294 |
+
dict(type='mmdet.Resize', scale=image_size),
|
295 |
+
# If you don't have a gt annotation, delete the pipeline
|
296 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
297 |
+
dict(
|
298 |
+
type='mmdet.PackDetInputs',
|
299 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
300 |
+
'scale_factor'))
|
301 |
+
]
|
302 |
+
|
303 |
+
|
304 |
+
train_batch_size_per_gpu = 6
|
305 |
+
train_num_workers = 4
|
306 |
+
test_batch_size_per_gpu = 6
|
307 |
+
test_num_workers = 4
|
308 |
+
persistent_workers = True
|
309 |
+
|
310 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
311 |
+
train_data_prefix = 'train/'
|
312 |
+
val_data_prefix = 'test/'
|
313 |
+
dataset_type = 'WHUInsSegDataset'
|
314 |
+
|
315 |
+
val_loader = dict(
|
316 |
+
batch_size=test_batch_size_per_gpu,
|
317 |
+
num_workers=test_num_workers,
|
318 |
+
persistent_workers=persistent_workers,
|
319 |
+
pin_memory=True,
|
320 |
+
dataset=dict(
|
321 |
+
type=dataset_type,
|
322 |
+
data_root=data_parent,
|
323 |
+
ann_file='annotations/WHU_building_test.json',
|
324 |
+
data_prefix=dict(img_path=val_data_prefix + '/image', seg_path=val_data_prefix + '/label'),
|
325 |
+
test_mode=True,
|
326 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
327 |
+
pipeline=test_pipeline,
|
328 |
+
backend_args=backend_args))
|
329 |
+
|
330 |
+
datamodule_cfg = dict(
|
331 |
+
type='PLDataModule',
|
332 |
+
train_loader=dict(
|
333 |
+
batch_size=train_batch_size_per_gpu,
|
334 |
+
num_workers=train_num_workers,
|
335 |
+
persistent_workers=persistent_workers,
|
336 |
+
pin_memory=True,
|
337 |
+
dataset=dict(
|
338 |
+
type=dataset_type,
|
339 |
+
data_root=data_parent,
|
340 |
+
ann_file='annotations/WHU_building_train.json',
|
341 |
+
data_prefix=dict(img_path=train_data_prefix + '/image', seg_path=train_data_prefix + '/label'),
|
342 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
343 |
+
pipeline=train_pipeline,
|
344 |
+
backend_args=backend_args)
|
345 |
+
),
|
346 |
+
val_loader=val_loader,
|
347 |
+
# test_loader=val_loader
|
348 |
+
predict_loader=val_loader
|
349 |
+
)
|
configs/rsprompter/samseg_maskrcnn_nwpu_config.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 1000
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=5e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
# train_evaluator=evaluator_,
|
53 |
+
val_evaluator=evaluator_,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
image_size = (1024, 1024)
|
58 |
+
|
59 |
+
data_preprocessor = dict(
|
60 |
+
type='mmdet.DetDataPreprocessor',
|
61 |
+
mean=[123.675, 116.28, 103.53],
|
62 |
+
std=[58.395, 57.12, 57.375],
|
63 |
+
bgr_to_rgb=True,
|
64 |
+
pad_size_divisor=32,
|
65 |
+
pad_mask=True,
|
66 |
+
mask_pad_value=0,
|
67 |
+
)
|
68 |
+
|
69 |
+
num_things_classes = 10
|
70 |
+
num_stuff_classes = 0
|
71 |
+
num_classes = num_things_classes + num_stuff_classes
|
72 |
+
|
73 |
+
|
74 |
+
model_cfg = dict(
|
75 |
+
type='SegSAMAnchorPLer',
|
76 |
+
hyperparameters=dict(
|
77 |
+
optimizer=optimizer,
|
78 |
+
param_scheduler=param_scheduler,
|
79 |
+
evaluator=evaluator,
|
80 |
+
),
|
81 |
+
need_train_names=sub_model_train,
|
82 |
+
data_preprocessor=data_preprocessor,
|
83 |
+
backbone=dict(
|
84 |
+
type='vit_h',
|
85 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
86 |
+
# type='vit_b',
|
87 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
88 |
+
),
|
89 |
+
panoptic_head=dict(
|
90 |
+
type='SAMAnchorInstanceHead',
|
91 |
+
sam_head=False,
|
92 |
+
neck=dict(
|
93 |
+
type='SAMAggregatorNeck',
|
94 |
+
in_channels=[1280] * 32,
|
95 |
+
# in_channels=[768] * 12,
|
96 |
+
inner_channels=32,
|
97 |
+
selected_channels=range(4, 32, 2),
|
98 |
+
# selected_channels=range(4, 12, 2),
|
99 |
+
out_channels=256,
|
100 |
+
up_sample_scale=4,
|
101 |
+
),
|
102 |
+
rpn_head=dict(
|
103 |
+
type='mmdet.RPNHead',
|
104 |
+
in_channels=256,
|
105 |
+
feat_channels=256,
|
106 |
+
anchor_generator=dict(
|
107 |
+
type='mmdet.AnchorGenerator',
|
108 |
+
scales=[2, 4, 8, 16, 32, 64],
|
109 |
+
ratios=[0.5, 1.0, 2.0],
|
110 |
+
strides=[8, 16, 32]),
|
111 |
+
bbox_coder=dict(
|
112 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
113 |
+
target_means=[.0, .0, .0, .0],
|
114 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
115 |
+
loss_cls=dict(
|
116 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
117 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
118 |
+
roi_head=dict(
|
119 |
+
type='mmdet.StandardRoIHead',
|
120 |
+
bbox_roi_extractor=dict(
|
121 |
+
type='mmdet.SingleRoIExtractor',
|
122 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
123 |
+
out_channels=256,
|
124 |
+
featmap_strides=[8, 16, 32]),
|
125 |
+
bbox_head=dict(
|
126 |
+
type='mmdet.Shared2FCBBoxHead',
|
127 |
+
in_channels=256,
|
128 |
+
fc_out_channels=1024,
|
129 |
+
roi_feat_size=7,
|
130 |
+
num_classes=num_classes,
|
131 |
+
bbox_coder=dict(
|
132 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
133 |
+
target_means=[0., 0., 0., 0.],
|
134 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
135 |
+
reg_class_agnostic=False,
|
136 |
+
loss_cls=dict(
|
137 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
138 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
139 |
+
mask_roi_extractor=dict(
|
140 |
+
type='mmdet.SingleRoIExtractor',
|
141 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
142 |
+
out_channels=256,
|
143 |
+
featmap_strides=[8, 16, 32]),
|
144 |
+
mask_head=dict(
|
145 |
+
type='mmdet.FCNMaskHead',
|
146 |
+
num_convs=4,
|
147 |
+
in_channels=256,
|
148 |
+
conv_out_channels=256,
|
149 |
+
num_classes=num_classes,
|
150 |
+
loss_mask=dict(
|
151 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
152 |
+
# model training and testing settings
|
153 |
+
train_cfg=dict(
|
154 |
+
rpn=dict(
|
155 |
+
assigner=dict(
|
156 |
+
type='mmdet.MaxIoUAssigner',
|
157 |
+
pos_iou_thr=0.7,
|
158 |
+
neg_iou_thr=0.3,
|
159 |
+
min_pos_iou=0.3,
|
160 |
+
match_low_quality=True,
|
161 |
+
ignore_iof_thr=-1),
|
162 |
+
sampler=dict(
|
163 |
+
type='mmdet.RandomSampler',
|
164 |
+
num=256,
|
165 |
+
pos_fraction=0.5,
|
166 |
+
neg_pos_ub=-1,
|
167 |
+
add_gt_as_proposals=False),
|
168 |
+
allowed_border=-1,
|
169 |
+
pos_weight=-1,
|
170 |
+
debug=False),
|
171 |
+
rpn_proposal=dict(
|
172 |
+
nms_pre=2000,
|
173 |
+
max_per_img=1000,
|
174 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
175 |
+
min_bbox_size=0),
|
176 |
+
rcnn=dict(
|
177 |
+
assigner=dict(
|
178 |
+
type='mmdet.MaxIoUAssigner',
|
179 |
+
pos_iou_thr=0.5,
|
180 |
+
neg_iou_thr=0.5,
|
181 |
+
min_pos_iou=0.5,
|
182 |
+
match_low_quality=True,
|
183 |
+
ignore_iof_thr=-1),
|
184 |
+
sampler=dict(
|
185 |
+
type='mmdet.RandomSampler',
|
186 |
+
num=512,
|
187 |
+
pos_fraction=0.25,
|
188 |
+
neg_pos_ub=-1,
|
189 |
+
add_gt_as_proposals=True),
|
190 |
+
mask_size=28,
|
191 |
+
pos_weight=-1,
|
192 |
+
debug=False)),
|
193 |
+
test_cfg=dict(
|
194 |
+
rpn=dict(
|
195 |
+
nms_pre=1000,
|
196 |
+
max_per_img=1000,
|
197 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
198 |
+
min_bbox_size=0),
|
199 |
+
rcnn=dict(
|
200 |
+
score_thr=0.05,
|
201 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
202 |
+
max_per_img=100,
|
203 |
+
mask_thr_binary=0.5)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
)
|
207 |
+
|
208 |
+
task_name = 'nwpu_ins'
|
209 |
+
exp_name = 'E20230530_0'
|
210 |
+
logger = dict(
|
211 |
+
type='WandbLogger',
|
212 |
+
project=task_name,
|
213 |
+
group='samcls-rcnn',
|
214 |
+
name=exp_name
|
215 |
+
)
|
216 |
+
# logger = None
|
217 |
+
|
218 |
+
callbacks = [
|
219 |
+
param_scheduler_callback,
|
220 |
+
dict(
|
221 |
+
type='ModelCheckpoint',
|
222 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
223 |
+
save_last=True,
|
224 |
+
mode='max',
|
225 |
+
monitor='valsegm_map_0',
|
226 |
+
save_top_k=2,
|
227 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
228 |
+
),
|
229 |
+
dict(
|
230 |
+
type='LearningRateMonitor',
|
231 |
+
logging_interval='step'
|
232 |
+
)
|
233 |
+
]
|
234 |
+
|
235 |
+
|
236 |
+
trainer_cfg = dict(
|
237 |
+
compiled_model=False,
|
238 |
+
accelerator="auto",
|
239 |
+
strategy="auto",
|
240 |
+
# strategy="ddp",
|
241 |
+
# strategy='ddp_find_unused_parameters_true',
|
242 |
+
# precision='32',
|
243 |
+
# precision='16-mixed',
|
244 |
+
devices=8,
|
245 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
246 |
+
# default_root_dir='results/tmp',
|
247 |
+
max_epochs=max_epochs,
|
248 |
+
logger=logger,
|
249 |
+
callbacks=callbacks,
|
250 |
+
log_every_n_steps=5,
|
251 |
+
check_val_every_n_epoch=5,
|
252 |
+
benchmark=True,
|
253 |
+
# sync_batchnorm=True,
|
254 |
+
# fast_dev_run=True,
|
255 |
+
|
256 |
+
# limit_train_batches=1,
|
257 |
+
# limit_val_batches=0,
|
258 |
+
# limit_test_batches=None,
|
259 |
+
# limit_predict_batches=None,
|
260 |
+
# overfit_batches=0.0,
|
261 |
+
|
262 |
+
# val_check_interval=None,
|
263 |
+
# num_sanity_val_steps=0,
|
264 |
+
# enable_checkpointing=None,
|
265 |
+
# enable_progress_bar=None,
|
266 |
+
# enable_model_summary=None,
|
267 |
+
# accumulate_grad_batches=32,
|
268 |
+
# gradient_clip_val=15,
|
269 |
+
# gradient_clip_algorithm='norm',
|
270 |
+
# deterministic=None,
|
271 |
+
# inference_mode: bool=True,
|
272 |
+
use_distributed_sampler=True,
|
273 |
+
# profiler="simple",
|
274 |
+
# detect_anomaly=False,
|
275 |
+
# barebones=False,
|
276 |
+
# plugins=None,
|
277 |
+
# reload_dataloaders_every_n_epochs=0,
|
278 |
+
)
|
279 |
+
|
280 |
+
|
281 |
+
backend_args = None
|
282 |
+
train_pipeline = [
|
283 |
+
dict(type='mmdet.LoadImageFromFile'),
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(type='mmdet.Resize', scale=image_size),
|
286 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
287 |
+
dict(type='mmdet.PackDetInputs')
|
288 |
+
]
|
289 |
+
|
290 |
+
test_pipeline = [
|
291 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
292 |
+
dict(type='mmdet.Resize', scale=image_size),
|
293 |
+
# If you don't have a gt annotation, delete the pipeline
|
294 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
295 |
+
dict(
|
296 |
+
type='mmdet.PackDetInputs',
|
297 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
298 |
+
'scale_factor'))
|
299 |
+
]
|
300 |
+
|
301 |
+
|
302 |
+
train_batch_size_per_gpu = 6
|
303 |
+
train_num_workers = 4
|
304 |
+
test_batch_size_per_gpu = 6
|
305 |
+
test_num_workers = 4
|
306 |
+
persistent_workers = True
|
307 |
+
|
308 |
+
data_parent = '/mnt/search01/dataset/cky_data/NWPU10'
|
309 |
+
train_data_prefix = ''
|
310 |
+
val_data_prefix = ''
|
311 |
+
|
312 |
+
dataset_type = 'NWPUInsSegDataset'
|
313 |
+
|
314 |
+
val_loader = dict(
|
315 |
+
batch_size=test_batch_size_per_gpu,
|
316 |
+
num_workers=test_num_workers,
|
317 |
+
persistent_workers=persistent_workers,
|
318 |
+
pin_memory=True,
|
319 |
+
dataset=dict(
|
320 |
+
type=dataset_type,
|
321 |
+
data_root=data_parent,
|
322 |
+
ann_file='NWPU_instances_val.json',
|
323 |
+
data_prefix=dict(img_path='positive image set'),
|
324 |
+
test_mode=True,
|
325 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
326 |
+
pipeline=test_pipeline,
|
327 |
+
backend_args=backend_args))
|
328 |
+
|
329 |
+
datamodule_cfg = dict(
|
330 |
+
type='PLDataModule',
|
331 |
+
train_loader=dict(
|
332 |
+
batch_size=train_batch_size_per_gpu,
|
333 |
+
num_workers=train_num_workers,
|
334 |
+
persistent_workers=persistent_workers,
|
335 |
+
pin_memory=True,
|
336 |
+
dataset=dict(
|
337 |
+
type=dataset_type,
|
338 |
+
data_root=data_parent,
|
339 |
+
ann_file='NWPU_instances_train.json',
|
340 |
+
data_prefix=dict(img_path='positive image set'),
|
341 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
342 |
+
pipeline=train_pipeline,
|
343 |
+
backend_args=backend_args)
|
344 |
+
),
|
345 |
+
val_loader=val_loader,
|
346 |
+
# test_loader=val_loader
|
347 |
+
predict_loader=val_loader
|
348 |
+
)
|
configs/rsprompter/samseg_maskrcnn_ssdd_config.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 800
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=5e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
# train_evaluator=evaluator_,
|
53 |
+
val_evaluator=evaluator_,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
image_size = (1024, 1024)
|
58 |
+
|
59 |
+
data_preprocessor = dict(
|
60 |
+
type='mmdet.DetDataPreprocessor',
|
61 |
+
mean=[123.675, 116.28, 103.53],
|
62 |
+
std=[58.395, 57.12, 57.375],
|
63 |
+
bgr_to_rgb=True,
|
64 |
+
pad_size_divisor=32,
|
65 |
+
pad_mask=True,
|
66 |
+
mask_pad_value=0,
|
67 |
+
)
|
68 |
+
|
69 |
+
num_things_classes = 1
|
70 |
+
num_stuff_classes = 0
|
71 |
+
num_classes = num_things_classes + num_stuff_classes
|
72 |
+
|
73 |
+
|
74 |
+
model_cfg = dict(
|
75 |
+
type='SegSAMAnchorPLer',
|
76 |
+
hyperparameters=dict(
|
77 |
+
optimizer=optimizer,
|
78 |
+
param_scheduler=param_scheduler,
|
79 |
+
evaluator=evaluator,
|
80 |
+
),
|
81 |
+
need_train_names=sub_model_train,
|
82 |
+
data_preprocessor=data_preprocessor,
|
83 |
+
backbone=dict(
|
84 |
+
type='vit_h',
|
85 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
86 |
+
# type='vit_b',
|
87 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
88 |
+
),
|
89 |
+
panoptic_head=dict(
|
90 |
+
type='SAMAnchorInstanceHead',
|
91 |
+
sam_head=False,
|
92 |
+
neck=dict(
|
93 |
+
type='SAMAggregatorNeck',
|
94 |
+
in_channels=[1280] * 32,
|
95 |
+
# in_channels=[768] * 12,
|
96 |
+
inner_channels=32,
|
97 |
+
selected_channels=range(4, 32, 2),
|
98 |
+
# selected_channels=range(4, 12, 2),
|
99 |
+
out_channels=256,
|
100 |
+
up_sample_scale=4,
|
101 |
+
),
|
102 |
+
rpn_head=dict(
|
103 |
+
type='mmdet.RPNHead',
|
104 |
+
in_channels=256,
|
105 |
+
feat_channels=256,
|
106 |
+
anchor_generator=dict(
|
107 |
+
type='mmdet.AnchorGenerator',
|
108 |
+
scales=[2, 4, 8, 16, 32, 64],
|
109 |
+
ratios=[0.5, 1.0, 2.0],
|
110 |
+
strides=[8, 16, 32]),
|
111 |
+
bbox_coder=dict(
|
112 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
113 |
+
target_means=[.0, .0, .0, .0],
|
114 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
115 |
+
loss_cls=dict(
|
116 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
117 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
118 |
+
roi_head=dict(
|
119 |
+
type='mmdet.StandardRoIHead',
|
120 |
+
bbox_roi_extractor=dict(
|
121 |
+
type='mmdet.SingleRoIExtractor',
|
122 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
123 |
+
out_channels=256,
|
124 |
+
featmap_strides=[8, 16, 32]),
|
125 |
+
bbox_head=dict(
|
126 |
+
type='mmdet.Shared2FCBBoxHead',
|
127 |
+
in_channels=256,
|
128 |
+
fc_out_channels=1024,
|
129 |
+
roi_feat_size=7,
|
130 |
+
num_classes=num_classes,
|
131 |
+
bbox_coder=dict(
|
132 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
133 |
+
target_means=[0., 0., 0., 0.],
|
134 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
135 |
+
reg_class_agnostic=False,
|
136 |
+
loss_cls=dict(
|
137 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
138 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
139 |
+
mask_roi_extractor=dict(
|
140 |
+
type='mmdet.SingleRoIExtractor',
|
141 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
142 |
+
out_channels=256,
|
143 |
+
featmap_strides=[8, 16, 32]),
|
144 |
+
mask_head=dict(
|
145 |
+
type='mmdet.FCNMaskHead',
|
146 |
+
num_convs=4,
|
147 |
+
in_channels=256,
|
148 |
+
conv_out_channels=256,
|
149 |
+
num_classes=num_classes,
|
150 |
+
loss_mask=dict(
|
151 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
152 |
+
# model training and testing settings
|
153 |
+
train_cfg=dict(
|
154 |
+
rpn=dict(
|
155 |
+
assigner=dict(
|
156 |
+
type='mmdet.MaxIoUAssigner',
|
157 |
+
pos_iou_thr=0.7,
|
158 |
+
neg_iou_thr=0.3,
|
159 |
+
min_pos_iou=0.3,
|
160 |
+
match_low_quality=True,
|
161 |
+
ignore_iof_thr=-1),
|
162 |
+
sampler=dict(
|
163 |
+
type='mmdet.RandomSampler',
|
164 |
+
num=256,
|
165 |
+
pos_fraction=0.5,
|
166 |
+
neg_pos_ub=-1,
|
167 |
+
add_gt_as_proposals=False),
|
168 |
+
allowed_border=-1,
|
169 |
+
pos_weight=-1,
|
170 |
+
debug=False),
|
171 |
+
rpn_proposal=dict(
|
172 |
+
nms_pre=2000,
|
173 |
+
max_per_img=1000,
|
174 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
175 |
+
min_bbox_size=0),
|
176 |
+
rcnn=dict(
|
177 |
+
assigner=dict(
|
178 |
+
type='mmdet.MaxIoUAssigner',
|
179 |
+
pos_iou_thr=0.5,
|
180 |
+
neg_iou_thr=0.5,
|
181 |
+
min_pos_iou=0.5,
|
182 |
+
match_low_quality=True,
|
183 |
+
ignore_iof_thr=-1),
|
184 |
+
sampler=dict(
|
185 |
+
type='mmdet.RandomSampler',
|
186 |
+
num=512,
|
187 |
+
pos_fraction=0.25,
|
188 |
+
neg_pos_ub=-1,
|
189 |
+
add_gt_as_proposals=True),
|
190 |
+
mask_size=28,
|
191 |
+
pos_weight=-1,
|
192 |
+
debug=False)),
|
193 |
+
test_cfg=dict(
|
194 |
+
rpn=dict(
|
195 |
+
nms_pre=1000,
|
196 |
+
max_per_img=1000,
|
197 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
198 |
+
min_bbox_size=0),
|
199 |
+
rcnn=dict(
|
200 |
+
score_thr=0.05,
|
201 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
202 |
+
max_per_img=100,
|
203 |
+
mask_thr_binary=0.5)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
)
|
207 |
+
|
208 |
+
task_name = 'ssdd_ins'
|
209 |
+
exp_name = 'E20230530_1'
|
210 |
+
logger = dict(
|
211 |
+
type='WandbLogger',
|
212 |
+
project=task_name,
|
213 |
+
group='samcls-rcnn',
|
214 |
+
name=exp_name
|
215 |
+
)
|
216 |
+
# logger = None
|
217 |
+
|
218 |
+
callbacks = [
|
219 |
+
param_scheduler_callback,
|
220 |
+
dict(
|
221 |
+
type='ModelCheckpoint',
|
222 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
223 |
+
save_last=True,
|
224 |
+
mode='max',
|
225 |
+
monitor='valsegm_map_0',
|
226 |
+
save_top_k=2,
|
227 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
228 |
+
),
|
229 |
+
dict(
|
230 |
+
type='LearningRateMonitor',
|
231 |
+
logging_interval='step'
|
232 |
+
)
|
233 |
+
]
|
234 |
+
|
235 |
+
|
236 |
+
trainer_cfg = dict(
|
237 |
+
compiled_model=False,
|
238 |
+
accelerator="auto",
|
239 |
+
strategy="auto",
|
240 |
+
# strategy="ddp",
|
241 |
+
# strategy='ddp_find_unused_parameters_true',
|
242 |
+
# precision='32',
|
243 |
+
# precision='16-mixed',
|
244 |
+
devices=8,
|
245 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
246 |
+
# default_root_dir='results/tmp',
|
247 |
+
max_epochs=max_epochs,
|
248 |
+
logger=logger,
|
249 |
+
callbacks=callbacks,
|
250 |
+
log_every_n_steps=5,
|
251 |
+
check_val_every_n_epoch=5,
|
252 |
+
benchmark=True,
|
253 |
+
# sync_batchnorm=True,
|
254 |
+
# fast_dev_run=True,
|
255 |
+
|
256 |
+
# limit_train_batches=1,
|
257 |
+
# limit_val_batches=0,
|
258 |
+
# limit_test_batches=None,
|
259 |
+
# limit_predict_batches=None,
|
260 |
+
# overfit_batches=0.0,
|
261 |
+
|
262 |
+
# val_check_interval=None,
|
263 |
+
# num_sanity_val_steps=0,
|
264 |
+
# enable_checkpointing=None,
|
265 |
+
# enable_progress_bar=None,
|
266 |
+
# enable_model_summary=None,
|
267 |
+
# accumulate_grad_batches=32,
|
268 |
+
# gradient_clip_val=15,
|
269 |
+
# gradient_clip_algorithm='norm',
|
270 |
+
# deterministic=None,
|
271 |
+
# inference_mode: bool=True,
|
272 |
+
use_distributed_sampler=True,
|
273 |
+
# profiler="simple",
|
274 |
+
# detect_anomaly=False,
|
275 |
+
# barebones=False,
|
276 |
+
# plugins=None,
|
277 |
+
# reload_dataloaders_every_n_epochs=0,
|
278 |
+
)
|
279 |
+
|
280 |
+
|
281 |
+
backend_args = None
|
282 |
+
train_pipeline = [
|
283 |
+
dict(type='mmdet.LoadImageFromFile'),
|
284 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
285 |
+
dict(type='mmdet.Resize', scale=image_size),
|
286 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
287 |
+
dict(type='mmdet.PackDetInputs')
|
288 |
+
]
|
289 |
+
|
290 |
+
test_pipeline = [
|
291 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
292 |
+
dict(type='mmdet.Resize', scale=image_size),
|
293 |
+
# If you don't have a gt annotation, delete the pipeline
|
294 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
295 |
+
dict(
|
296 |
+
type='mmdet.PackDetInputs',
|
297 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
298 |
+
'scale_factor'))
|
299 |
+
]
|
300 |
+
|
301 |
+
|
302 |
+
train_batch_size_per_gpu = 6
|
303 |
+
train_num_workers = 4
|
304 |
+
test_batch_size_per_gpu = 6
|
305 |
+
test_num_workers = 4
|
306 |
+
persistent_workers = True
|
307 |
+
|
308 |
+
data_parent = '/mnt/search01/dataset/cky_data/SSDD'
|
309 |
+
dataset_type = 'SSDDInsSegDataset'
|
310 |
+
|
311 |
+
val_loader = dict(
|
312 |
+
batch_size=test_batch_size_per_gpu,
|
313 |
+
num_workers=test_num_workers,
|
314 |
+
persistent_workers=persistent_workers,
|
315 |
+
pin_memory=True,
|
316 |
+
dataset=dict(
|
317 |
+
type=dataset_type,
|
318 |
+
data_root=data_parent,
|
319 |
+
ann_file='annotations/SSDD_instances_val.json',
|
320 |
+
data_prefix=dict(img_path='imgs'),
|
321 |
+
test_mode=True,
|
322 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
323 |
+
pipeline=test_pipeline,
|
324 |
+
backend_args=backend_args))
|
325 |
+
|
326 |
+
datamodule_cfg = dict(
|
327 |
+
type='PLDataModule',
|
328 |
+
train_loader=dict(
|
329 |
+
batch_size=train_batch_size_per_gpu,
|
330 |
+
num_workers=train_num_workers,
|
331 |
+
persistent_workers=persistent_workers,
|
332 |
+
pin_memory=True,
|
333 |
+
dataset=dict(
|
334 |
+
type=dataset_type,
|
335 |
+
data_root=data_parent,
|
336 |
+
ann_file='annotations/SSDD_instances_train.json',
|
337 |
+
data_prefix=dict(img_path='imgs'),
|
338 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
339 |
+
pipeline=train_pipeline,
|
340 |
+
backend_args=backend_args)
|
341 |
+
),
|
342 |
+
val_loader=val_loader,
|
343 |
+
# test_loader=val_loader
|
344 |
+
predict_loader=val_loader
|
345 |
+
)
|
configs/rsprompter/samseg_maskrcnn_whu_config.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False)
|
2 |
+
|
3 |
+
sub_model_train = [
|
4 |
+
'panoptic_head',
|
5 |
+
'data_preprocessor'
|
6 |
+
]
|
7 |
+
|
8 |
+
sub_model_optim = {
|
9 |
+
'panoptic_head': {'lr_mult': 1},
|
10 |
+
}
|
11 |
+
|
12 |
+
max_epochs = 400
|
13 |
+
|
14 |
+
optimizer = dict(
|
15 |
+
type='AdamW',
|
16 |
+
sub_model=sub_model_optim,
|
17 |
+
lr=0.0005,
|
18 |
+
weight_decay=1e-3
|
19 |
+
)
|
20 |
+
|
21 |
+
param_scheduler = [
|
22 |
+
# warm up learning rate scheduler
|
23 |
+
dict(
|
24 |
+
type='LinearLR',
|
25 |
+
start_factor=5e-4,
|
26 |
+
by_epoch=True,
|
27 |
+
begin=0,
|
28 |
+
end=1,
|
29 |
+
# update by iter
|
30 |
+
convert_to_iter_based=True),
|
31 |
+
# main learning rate scheduler
|
32 |
+
dict(
|
33 |
+
type='CosineAnnealingLR',
|
34 |
+
T_max=max_epochs,
|
35 |
+
by_epoch=True,
|
36 |
+
begin=1,
|
37 |
+
end=max_epochs,
|
38 |
+
),
|
39 |
+
]
|
40 |
+
|
41 |
+
param_scheduler_callback = dict(
|
42 |
+
type='ParamSchedulerHook'
|
43 |
+
)
|
44 |
+
|
45 |
+
evaluator_ = dict(
|
46 |
+
type='CocoPLMetric',
|
47 |
+
metric=['bbox', 'segm'],
|
48 |
+
proposal_nums=[1, 10, 100]
|
49 |
+
)
|
50 |
+
|
51 |
+
evaluator = dict(
|
52 |
+
val_evaluator=evaluator_,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
image_size = (1024, 1024)
|
57 |
+
|
58 |
+
data_preprocessor = dict(
|
59 |
+
type='mmdet.DetDataPreprocessor',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
bgr_to_rgb=True,
|
63 |
+
pad_size_divisor=32,
|
64 |
+
pad_mask=True,
|
65 |
+
mask_pad_value=0,
|
66 |
+
)
|
67 |
+
|
68 |
+
num_things_classes = 1
|
69 |
+
num_stuff_classes = 0
|
70 |
+
num_classes = num_things_classes + num_stuff_classes
|
71 |
+
|
72 |
+
|
73 |
+
model_cfg = dict(
|
74 |
+
type='SegSAMAnchorPLer',
|
75 |
+
hyperparameters=dict(
|
76 |
+
optimizer=optimizer,
|
77 |
+
param_scheduler=param_scheduler,
|
78 |
+
evaluator=evaluator,
|
79 |
+
),
|
80 |
+
need_train_names=sub_model_train,
|
81 |
+
data_preprocessor=data_preprocessor,
|
82 |
+
backbone=dict(
|
83 |
+
type='vit_h',
|
84 |
+
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth',
|
85 |
+
# type='vit_b',
|
86 |
+
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth',
|
87 |
+
),
|
88 |
+
panoptic_head=dict(
|
89 |
+
type='SAMAnchorInstanceHead',
|
90 |
+
sam_head=False,
|
91 |
+
neck=dict(
|
92 |
+
type='SAMAggregatorNeck',
|
93 |
+
in_channels=[1280] * 32,
|
94 |
+
# in_channels=[768] * 12,
|
95 |
+
inner_channels=32,
|
96 |
+
selected_channels=range(4, 32, 2),
|
97 |
+
# selected_channels=range(4, 12, 2),
|
98 |
+
out_channels=256,
|
99 |
+
up_sample_scale=4,
|
100 |
+
),
|
101 |
+
rpn_head=dict(
|
102 |
+
type='mmdet.RPNHead',
|
103 |
+
in_channels=256,
|
104 |
+
feat_channels=256,
|
105 |
+
anchor_generator=dict(
|
106 |
+
type='mmdet.AnchorGenerator',
|
107 |
+
scales=[2, 4, 8, 16, 32, 64],
|
108 |
+
ratios=[0.5, 1.0, 2.0],
|
109 |
+
strides=[8, 16, 32]),
|
110 |
+
bbox_coder=dict(
|
111 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
112 |
+
target_means=[.0, .0, .0, .0],
|
113 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
114 |
+
loss_cls=dict(
|
115 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
116 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
117 |
+
roi_head=dict(
|
118 |
+
type='mmdet.StandardRoIHead',
|
119 |
+
bbox_roi_extractor=dict(
|
120 |
+
type='mmdet.SingleRoIExtractor',
|
121 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
122 |
+
out_channels=256,
|
123 |
+
featmap_strides=[8, 16, 32]),
|
124 |
+
bbox_head=dict(
|
125 |
+
type='mmdet.Shared2FCBBoxHead',
|
126 |
+
in_channels=256,
|
127 |
+
fc_out_channels=1024,
|
128 |
+
roi_feat_size=7,
|
129 |
+
num_classes=num_classes,
|
130 |
+
bbox_coder=dict(
|
131 |
+
type='mmdet.DeltaXYWHBBoxCoder',
|
132 |
+
target_means=[0., 0., 0., 0.],
|
133 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
134 |
+
reg_class_agnostic=False,
|
135 |
+
loss_cls=dict(
|
136 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
137 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
138 |
+
mask_roi_extractor=dict(
|
139 |
+
type='mmdet.SingleRoIExtractor',
|
140 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
141 |
+
out_channels=256,
|
142 |
+
featmap_strides=[8, 16, 32]),
|
143 |
+
mask_head=dict(
|
144 |
+
type='mmdet.FCNMaskHead',
|
145 |
+
num_convs=4,
|
146 |
+
in_channels=256,
|
147 |
+
conv_out_channels=256,
|
148 |
+
num_classes=num_classes,
|
149 |
+
loss_mask=dict(
|
150 |
+
type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
151 |
+
# model training and testing settings
|
152 |
+
train_cfg=dict(
|
153 |
+
rpn=dict(
|
154 |
+
assigner=dict(
|
155 |
+
type='mmdet.MaxIoUAssigner',
|
156 |
+
pos_iou_thr=0.7,
|
157 |
+
neg_iou_thr=0.3,
|
158 |
+
min_pos_iou=0.3,
|
159 |
+
match_low_quality=True,
|
160 |
+
ignore_iof_thr=-1),
|
161 |
+
sampler=dict(
|
162 |
+
type='mmdet.RandomSampler',
|
163 |
+
num=256,
|
164 |
+
pos_fraction=0.5,
|
165 |
+
neg_pos_ub=-1,
|
166 |
+
add_gt_as_proposals=False),
|
167 |
+
allowed_border=-1,
|
168 |
+
pos_weight=-1,
|
169 |
+
debug=False),
|
170 |
+
rpn_proposal=dict(
|
171 |
+
nms_pre=2000,
|
172 |
+
max_per_img=1000,
|
173 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
174 |
+
min_bbox_size=0),
|
175 |
+
rcnn=dict(
|
176 |
+
assigner=dict(
|
177 |
+
type='mmdet.MaxIoUAssigner',
|
178 |
+
pos_iou_thr=0.5,
|
179 |
+
neg_iou_thr=0.5,
|
180 |
+
min_pos_iou=0.5,
|
181 |
+
match_low_quality=True,
|
182 |
+
ignore_iof_thr=-1),
|
183 |
+
sampler=dict(
|
184 |
+
type='mmdet.RandomSampler',
|
185 |
+
num=512,
|
186 |
+
pos_fraction=0.25,
|
187 |
+
neg_pos_ub=-1,
|
188 |
+
add_gt_as_proposals=True),
|
189 |
+
mask_size=28,
|
190 |
+
pos_weight=-1,
|
191 |
+
debug=False)),
|
192 |
+
test_cfg=dict(
|
193 |
+
rpn=dict(
|
194 |
+
nms_pre=1000,
|
195 |
+
max_per_img=1000,
|
196 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
197 |
+
min_bbox_size=0),
|
198 |
+
rcnn=dict(
|
199 |
+
score_thr=0.05,
|
200 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
201 |
+
max_per_img=100,
|
202 |
+
mask_thr_binary=0.5)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
|
207 |
+
task_name = 'whu_ins'
|
208 |
+
exp_name = 'E20230530_2'
|
209 |
+
logger = dict(
|
210 |
+
type='WandbLogger',
|
211 |
+
project=task_name,
|
212 |
+
group='samcls-rcnn',
|
213 |
+
name=exp_name
|
214 |
+
)
|
215 |
+
# logger = None
|
216 |
+
|
217 |
+
callbacks = [
|
218 |
+
param_scheduler_callback,
|
219 |
+
dict(
|
220 |
+
type='ModelCheckpoint',
|
221 |
+
dirpath=f'results/{task_name}/{exp_name}/checkpoints',
|
222 |
+
save_last=True,
|
223 |
+
mode='max',
|
224 |
+
monitor='valsegm_map_0',
|
225 |
+
save_top_k=2,
|
226 |
+
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}'
|
227 |
+
),
|
228 |
+
dict(
|
229 |
+
type='LearningRateMonitor',
|
230 |
+
logging_interval='step'
|
231 |
+
)
|
232 |
+
]
|
233 |
+
|
234 |
+
|
235 |
+
trainer_cfg = dict(
|
236 |
+
compiled_model=False,
|
237 |
+
accelerator="auto",
|
238 |
+
strategy="auto",
|
239 |
+
# strategy="ddp",
|
240 |
+
# strategy='ddp_find_unused_parameters_true',
|
241 |
+
# precision='32',
|
242 |
+
# precision='16-mixed',
|
243 |
+
devices=8,
|
244 |
+
default_root_dir=f'results/{task_name}/{exp_name}',
|
245 |
+
# default_root_dir='results/tmp',
|
246 |
+
max_epochs=max_epochs,
|
247 |
+
logger=logger,
|
248 |
+
callbacks=callbacks,
|
249 |
+
log_every_n_steps=20,
|
250 |
+
check_val_every_n_epoch=5,
|
251 |
+
benchmark=True,
|
252 |
+
# sync_batchnorm=True,
|
253 |
+
# fast_dev_run=True,
|
254 |
+
|
255 |
+
# limit_train_batches=1,
|
256 |
+
# limit_val_batches=0,
|
257 |
+
# limit_test_batches=None,
|
258 |
+
# limit_predict_batches=None,
|
259 |
+
# overfit_batches=0.0,
|
260 |
+
|
261 |
+
# val_check_interval=None,
|
262 |
+
# num_sanity_val_steps=0,
|
263 |
+
# enable_checkpointing=None,
|
264 |
+
# enable_progress_bar=None,
|
265 |
+
# enable_model_summary=None,
|
266 |
+
# accumulate_grad_batches=32,
|
267 |
+
# gradient_clip_val=15,
|
268 |
+
# gradient_clip_algorithm='norm',
|
269 |
+
# deterministic=None,
|
270 |
+
# inference_mode: bool=True,
|
271 |
+
use_distributed_sampler=True,
|
272 |
+
# profiler="simple",
|
273 |
+
# detect_anomaly=False,
|
274 |
+
# barebones=False,
|
275 |
+
# plugins=None,
|
276 |
+
# reload_dataloaders_every_n_epochs=0,
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
backend_args = None
|
281 |
+
train_pipeline = [
|
282 |
+
dict(type='mmdet.LoadImageFromFile'),
|
283 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
284 |
+
dict(type='mmdet.Resize', scale=image_size),
|
285 |
+
dict(type='mmdet.RandomFlip', prob=0.5),
|
286 |
+
dict(type='mmdet.PackDetInputs')
|
287 |
+
]
|
288 |
+
|
289 |
+
test_pipeline = [
|
290 |
+
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args),
|
291 |
+
dict(type='mmdet.Resize', scale=image_size),
|
292 |
+
# If you don't have a gt annotation, delete the pipeline
|
293 |
+
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True),
|
294 |
+
dict(
|
295 |
+
type='mmdet.PackDetInputs',
|
296 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
297 |
+
'scale_factor'))
|
298 |
+
]
|
299 |
+
|
300 |
+
|
301 |
+
train_batch_size_per_gpu = 6
|
302 |
+
train_num_workers = 4
|
303 |
+
test_batch_size_per_gpu = 6
|
304 |
+
test_num_workers = 4
|
305 |
+
persistent_workers = True
|
306 |
+
|
307 |
+
data_parent = '/mnt/search01/dataset/cky_data/WHU'
|
308 |
+
train_data_prefix = 'train/'
|
309 |
+
val_data_prefix = 'test/'
|
310 |
+
dataset_type = 'WHUInsSegDataset'
|
311 |
+
|
312 |
+
val_loader = dict(
|
313 |
+
batch_size=test_batch_size_per_gpu,
|
314 |
+
num_workers=test_num_workers,
|
315 |
+
persistent_workers=persistent_workers,
|
316 |
+
pin_memory=True,
|
317 |
+
dataset=dict(
|
318 |
+
type=dataset_type,
|
319 |
+
data_root=data_parent,
|
320 |
+
ann_file='annotations/WHU_building_test.json',
|
321 |
+
data_prefix=dict(img_path=val_data_prefix + '/image', seg_path=val_data_prefix + '/label'),
|
322 |
+
test_mode=True,
|
323 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
324 |
+
pipeline=test_pipeline,
|
325 |
+
backend_args=backend_args))
|
326 |
+
|
327 |
+
datamodule_cfg = dict(
|
328 |
+
type='PLDataModule',
|
329 |
+
train_loader=dict(
|
330 |
+
batch_size=train_batch_size_per_gpu,
|
331 |
+
num_workers=train_num_workers,
|
332 |
+
persistent_workers=persistent_workers,
|
333 |
+
pin_memory=True,
|
334 |
+
dataset=dict(
|
335 |
+
type=dataset_type,
|
336 |
+
data_root=data_parent,
|
337 |
+
ann_file='annotations/WHU_building_train.json',
|
338 |
+
data_prefix=dict(img_path=train_data_prefix + '/image', seg_path=train_data_prefix + '/label'),
|
339 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
340 |
+
pipeline=train_pipeline,
|
341 |
+
backend_args=backend_args)
|
342 |
+
),
|
343 |
+
val_loader=val_loader,
|
344 |
+
# test_loader=val_loader
|
345 |
+
predict_loader=val_loader
|
346 |
+
)
|