Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List | |
import mat4py | |
from mmengine import get_file_backend | |
from mmpretrain.registry import DATASETS | |
from .base_dataset import BaseDataset | |
from .categories import STANFORDCARS_CATEGORIES | |
class StanfordCars(BaseDataset): | |
"""The Stanford Cars Dataset. | |
Support the `Stanford Cars Dataset <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset. | |
The official website provides two ways to organize the dataset. | |
Therefore, after downloading and decompression, the dataset directory structure is as follows. | |
Stanford Cars dataset directory: :: | |
Stanford_Cars | |
βββ car_ims | |
β βββ 00001.jpg | |
β βββ 00002.jpg | |
β βββ ... | |
βββ cars_annos.mat | |
or :: | |
Stanford_Cars | |
βββ cars_train | |
β βββ 00001.jpg | |
β βββ 00002.jpg | |
β βββ ... | |
βββ cars_test | |
β βββ 00001.jpg | |
β βββ 00002.jpg | |
β βββ ... | |
βββ devkit | |
βββ cars_meta.mat | |
βββ cars_train_annos.mat | |
βββ cars_test_annos.mat | |
βββ cars_test_annoswithlabels.mat | |
βββ eval_train.m | |
βββ train_perfect_preds.txt | |
Args: | |
data_root (str): The root directory for Stanford Cars dataset. | |
split (str, optional): The dataset split, supports "train" | |
and "test". Default to "train". | |
Examples: | |
>>> from mmpretrain.datasets import StanfordCars | |
>>> train_dataset = StanfordCars(data_root='data/Stanford_Cars', split='train') | |
>>> train_dataset | |
Dataset StanfordCars | |
Number of samples: 8144 | |
Number of categories: 196 | |
Root of dataset: data/Stanford_Cars | |
>>> test_dataset = StanfordCars(data_root='data/Stanford_Cars', split='test') | |
>>> test_dataset | |
Dataset StanfordCars | |
Number of samples: 8041 | |
Number of categories: 196 | |
Root of dataset: data/Stanford_Cars | |
""" # noqa: E501 | |
METAINFO = {'classes': STANFORDCARS_CATEGORIES} | |
def __init__(self, data_root: str, split: str = 'train', **kwargs): | |
splits = ['train', 'test'] | |
assert split in splits, \ | |
f"The split must be one of {splits}, but get '{split}'" | |
self.split = split | |
test_mode = split == 'test' | |
self.backend = get_file_backend(data_root, enable_singleton=True) | |
anno_file_path = self.backend.join_path(data_root, 'cars_annos.mat') | |
if self.backend.exists(anno_file_path): | |
ann_file = 'cars_annos.mat' | |
data_prefix = '' | |
else: | |
if test_mode: | |
ann_file = self.backend.join_path( | |
'devkit', 'cars_test_annos_withlabels.mat') | |
data_prefix = 'cars_test' | |
else: | |
ann_file = self.backend.join_path('devkit', | |
'cars_train_annos.mat') | |
data_prefix = 'cars_train' | |
if not self.backend.exists( | |
self.backend.join_path(data_root, ann_file)): | |
doc_url = 'https://mmpretrain.readthedocs.io/en/latest/api/datasets.html#stanfordcars' # noqa: E501 | |
raise RuntimeError( | |
f'The dataset is incorrectly organized, please \ | |
refer to {doc_url} and reorganize your folders.') | |
super(StanfordCars, self).__init__( | |
ann_file=ann_file, | |
data_root=data_root, | |
data_prefix=data_prefix, | |
test_mode=test_mode, | |
**kwargs) | |
def load_data_list(self): | |
data = mat4py.loadmat(self.ann_file)['annotations'] | |
data_list = [] | |
if 'test' in data.keys(): | |
# first way | |
img_paths, labels, test = data['relative_im_path'], data[ | |
'class'], data['test'] | |
num = len(img_paths) | |
assert num == len(labels) == len(test), 'get error ann file' | |
for i in range(num): | |
if not self.test_mode and test[i] == 1: | |
continue | |
if self.test_mode and test[i] == 0: | |
continue | |
img_path = self.backend.join_path(self.img_prefix, | |
img_paths[i]) | |
gt_label = labels[i] - 1 | |
info = dict(img_path=img_path, gt_label=gt_label) | |
data_list.append(info) | |
else: | |
# second way | |
img_names, labels = data['fname'], data['class'] | |
num = len(img_names) | |
assert num == len(labels), 'get error ann file' | |
for i in range(num): | |
img_path = self.backend.join_path(self.img_prefix, | |
img_names[i]) | |
gt_label = labels[i] - 1 | |
info = dict(img_path=img_path, gt_label=gt_label) | |
data_list.append(info) | |
return data_list | |
def extra_repr(self) -> List[str]: | |
"""The extra repr information of the dataset.""" | |
body = [ | |
f'Root of dataset: \t{self.data_root}', | |
] | |
return body | |