RSPrompter / mmpretrain /datasets /stanfordcars.py
KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
5.42 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import mat4py
from mmengine import get_file_backend
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import STANFORDCARS_CATEGORIES
@DATASETS.register_module()
class StanfordCars(BaseDataset):
"""The Stanford Cars Dataset.
Support the `Stanford Cars Dataset <https://ai.stanford.edu/~jkrause/cars/car_dataset.html>`_ Dataset.
The official website provides two ways to organize the dataset.
Therefore, after downloading and decompression, the dataset directory structure is as follows.
Stanford Cars dataset directory: ::
Stanford_Cars
β”œβ”€β”€ car_ims
β”‚ β”œβ”€β”€ 00001.jpg
β”‚ β”œβ”€β”€ 00002.jpg
β”‚ └── ...
└── cars_annos.mat
or ::
Stanford_Cars
β”œβ”€β”€ cars_train
β”‚ β”œβ”€β”€ 00001.jpg
β”‚ β”œβ”€β”€ 00002.jpg
β”‚ └── ...
β”œβ”€β”€ cars_test
β”‚ β”œβ”€β”€ 00001.jpg
β”‚ β”œβ”€β”€ 00002.jpg
β”‚ └── ...
└── devkit
β”œβ”€β”€ cars_meta.mat
β”œβ”€β”€ cars_train_annos.mat
β”œβ”€β”€ cars_test_annos.mat
β”œβ”€β”€ cars_test_annoswithlabels.mat
β”œβ”€β”€ eval_train.m
└── train_perfect_preds.txt
Args:
data_root (str): The root directory for Stanford Cars dataset.
split (str, optional): The dataset split, supports "train"
and "test". Default to "train".
Examples:
>>> from mmpretrain.datasets import StanfordCars
>>> train_dataset = StanfordCars(data_root='data/Stanford_Cars', split='train')
>>> train_dataset
Dataset StanfordCars
Number of samples: 8144
Number of categories: 196
Root of dataset: data/Stanford_Cars
>>> test_dataset = StanfordCars(data_root='data/Stanford_Cars', split='test')
>>> test_dataset
Dataset StanfordCars
Number of samples: 8041
Number of categories: 196
Root of dataset: data/Stanford_Cars
""" # noqa: E501
METAINFO = {'classes': STANFORDCARS_CATEGORIES}
def __init__(self, data_root: str, split: str = 'train', **kwargs):
splits = ['train', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
self.split = split
test_mode = split == 'test'
self.backend = get_file_backend(data_root, enable_singleton=True)
anno_file_path = self.backend.join_path(data_root, 'cars_annos.mat')
if self.backend.exists(anno_file_path):
ann_file = 'cars_annos.mat'
data_prefix = ''
else:
if test_mode:
ann_file = self.backend.join_path(
'devkit', 'cars_test_annos_withlabels.mat')
data_prefix = 'cars_test'
else:
ann_file = self.backend.join_path('devkit',
'cars_train_annos.mat')
data_prefix = 'cars_train'
if not self.backend.exists(
self.backend.join_path(data_root, ann_file)):
doc_url = 'https://mmpretrain.readthedocs.io/en/latest/api/datasets.html#stanfordcars' # noqa: E501
raise RuntimeError(
f'The dataset is incorrectly organized, please \
refer to {doc_url} and reorganize your folders.')
super(StanfordCars, self).__init__(
ann_file=ann_file,
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
**kwargs)
def load_data_list(self):
data = mat4py.loadmat(self.ann_file)['annotations']
data_list = []
if 'test' in data.keys():
# first way
img_paths, labels, test = data['relative_im_path'], data[
'class'], data['test']
num = len(img_paths)
assert num == len(labels) == len(test), 'get error ann file'
for i in range(num):
if not self.test_mode and test[i] == 1:
continue
if self.test_mode and test[i] == 0:
continue
img_path = self.backend.join_path(self.img_prefix,
img_paths[i])
gt_label = labels[i] - 1
info = dict(img_path=img_path, gt_label=gt_label)
data_list.append(info)
else:
# second way
img_names, labels = data['fname'], data['class']
num = len(img_names)
assert num == len(labels), 'get error ann file'
for i in range(num):
img_path = self.backend.join_path(self.img_prefix,
img_names[i])
gt_label = labels[i] - 1
info = dict(img_path=img_path, gt_label=gt_label)
data_list.append(info)
return data_list
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Root of dataset: \t{self.data_root}',
]
return body