# Copyright (c) OpenMMLab. All rights reserved. from typing import List import mat4py from mmengine import get_file_backend from mmpretrain.registry import DATASETS from .base_dataset import BaseDataset from .categories import STANFORDCARS_CATEGORIES @DATASETS.register_module() class StanfordCars(BaseDataset): """The Stanford Cars Dataset. Support the `Stanford Cars Dataset `_ Dataset. The official website provides two ways to organize the dataset. Therefore, after downloading and decompression, the dataset directory structure is as follows. Stanford Cars dataset directory: :: Stanford_Cars ├── car_ims │ ├── 00001.jpg │ ├── 00002.jpg │ └── ... └── cars_annos.mat or :: Stanford_Cars ├── cars_train │ ├── 00001.jpg │ ├── 00002.jpg │ └── ... ├── cars_test │ ├── 00001.jpg │ ├── 00002.jpg │ └── ... └── devkit ├── cars_meta.mat ├── cars_train_annos.mat ├── cars_test_annos.mat ├── cars_test_annoswithlabels.mat ├── eval_train.m └── train_perfect_preds.txt Args: data_root (str): The root directory for Stanford Cars dataset. split (str, optional): The dataset split, supports "train" and "test". Default to "train". Examples: >>> from mmpretrain.datasets import StanfordCars >>> train_dataset = StanfordCars(data_root='data/Stanford_Cars', split='train') >>> train_dataset Dataset StanfordCars Number of samples: 8144 Number of categories: 196 Root of dataset: data/Stanford_Cars >>> test_dataset = StanfordCars(data_root='data/Stanford_Cars', split='test') >>> test_dataset Dataset StanfordCars Number of samples: 8041 Number of categories: 196 Root of dataset: data/Stanford_Cars """ # noqa: E501 METAINFO = {'classes': STANFORDCARS_CATEGORIES} def __init__(self, data_root: str, split: str = 'train', **kwargs): splits = ['train', 'test'] assert split in splits, \ f"The split must be one of {splits}, but get '{split}'" self.split = split test_mode = split == 'test' self.backend = get_file_backend(data_root, enable_singleton=True) anno_file_path = self.backend.join_path(data_root, 'cars_annos.mat') if self.backend.exists(anno_file_path): ann_file = 'cars_annos.mat' data_prefix = '' else: if test_mode: ann_file = self.backend.join_path( 'devkit', 'cars_test_annos_withlabels.mat') data_prefix = 'cars_test' else: ann_file = self.backend.join_path('devkit', 'cars_train_annos.mat') data_prefix = 'cars_train' if not self.backend.exists( self.backend.join_path(data_root, ann_file)): doc_url = 'https://mmpretrain.readthedocs.io/en/latest/api/datasets.html#stanfordcars' # noqa: E501 raise RuntimeError( f'The dataset is incorrectly organized, please \ refer to {doc_url} and reorganize your folders.') super(StanfordCars, self).__init__( ann_file=ann_file, data_root=data_root, data_prefix=data_prefix, test_mode=test_mode, **kwargs) def load_data_list(self): data = mat4py.loadmat(self.ann_file)['annotations'] data_list = [] if 'test' in data.keys(): # first way img_paths, labels, test = data['relative_im_path'], data[ 'class'], data['test'] num = len(img_paths) assert num == len(labels) == len(test), 'get error ann file' for i in range(num): if not self.test_mode and test[i] == 1: continue if self.test_mode and test[i] == 0: continue img_path = self.backend.join_path(self.img_prefix, img_paths[i]) gt_label = labels[i] - 1 info = dict(img_path=img_path, gt_label=gt_label) data_list.append(info) else: # second way img_names, labels = data['fname'], data['class'] num = len(img_names) assert num == len(labels), 'get error ann file' for i in range(num): img_path = self.backend.join_path(self.img_prefix, img_names[i]) gt_label = labels[i] - 1 info = dict(img_path=img_path, gt_label=gt_label) data_list.append(info) return data_list def extra_repr(self) -> List[str]: """The extra repr information of the dataset.""" body = [ f'Root of dataset: \t{self.data_root}', ] return body