Spaces:
Runtime error
Runtime error
| custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], allow_failed_imports=False) | |
| max_epochs = 500 | |
| optimizer = dict( | |
| type='AdamW', | |
| lr=0.0005, | |
| weight_decay=1e-4 | |
| ) | |
| param_scheduler = [ | |
| # warm up learning rate scheduler | |
| dict( | |
| type='LinearLR', | |
| start_factor=1e-4, | |
| by_epoch=True, | |
| begin=0, | |
| end=1, | |
| # update by iter | |
| convert_to_iter_based=True), | |
| # main learning rate scheduler | |
| dict( | |
| type='CosineAnnealingLR', | |
| T_max=max_epochs, | |
| by_epoch=True, | |
| begin=1, | |
| end=max_epochs, | |
| ) | |
| ] | |
| param_scheduler_callback = dict( | |
| type='ParamSchedulerHook' | |
| ) | |
| evaluator_ = dict( | |
| type='CocoPLMetric', | |
| metric=['bbox', 'segm'], | |
| proposal_nums=[1, 10, 100] | |
| ) | |
| evaluator = dict( | |
| val_evaluator=evaluator_, | |
| ) | |
| image_size = (512, 512) | |
| data_preprocessor = dict( | |
| type='mmdet.DetDataPreprocessor', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375], | |
| bgr_to_rgb=True, | |
| pad_mask=True, | |
| mask_pad_value=0, | |
| pad_size_divisor=32 | |
| ) | |
| num_things_classes = 1 | |
| num_stuff_classes = 0 | |
| num_classes = num_things_classes + num_stuff_classes | |
| num_queries = 100 | |
| # model settings | |
| model = dict( | |
| type='mmdet.MaskRCNN', | |
| data_preprocessor=data_preprocessor, | |
| backbone=dict( | |
| type='mmdet.ResNet', | |
| depth=50, | |
| num_stages=4, | |
| out_indices=(0, 1, 2, 3), | |
| frozen_stages=-1, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| norm_eval=True, | |
| style='pytorch', | |
| init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50') | |
| ), | |
| neck=dict( | |
| type='mmdet.FPN', | |
| in_channels=[256, 512, 1024, 2048], | |
| out_channels=256, | |
| num_outs=5), | |
| rpn_head=dict( | |
| type='mmdet.RPNHead', | |
| in_channels=256, | |
| feat_channels=256, | |
| anchor_generator=dict( | |
| type='mmdet.AnchorGenerator', | |
| scales=[8], | |
| ratios=[0.5, 1.0, 2.0], | |
| strides=[4, 8, 16, 32, 64]), | |
| bbox_coder=dict( | |
| type='mmdet.DeltaXYWHBBoxCoder', | |
| target_means=[.0, .0, .0, .0], | |
| target_stds=[1.0, 1.0, 1.0, 1.0]), | |
| loss_cls=dict( | |
| type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | |
| loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)), | |
| roi_head=dict( | |
| type='mmdet.StandardRoIHead', | |
| bbox_roi_extractor=dict( | |
| type='mmdet.SingleRoIExtractor', | |
| roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), | |
| out_channels=256, | |
| featmap_strides=[4, 8, 16, 32]), | |
| bbox_head=dict( | |
| type='mmdet.Shared2FCBBoxHead', | |
| in_channels=256, | |
| fc_out_channels=1024, | |
| roi_feat_size=7, | |
| num_classes=num_classes, | |
| bbox_coder=dict( | |
| type='mmdet.DeltaXYWHBBoxCoder', | |
| target_means=[0., 0., 0., 0.], | |
| target_stds=[0.1, 0.1, 0.2, 0.2]), | |
| reg_class_agnostic=False, | |
| loss_cls=dict( | |
| type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | |
| loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)), | |
| mask_roi_extractor=dict( | |
| type='mmdet.SingleRoIExtractor', | |
| roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), | |
| out_channels=256, | |
| featmap_strides=[4, 8, 16, 32]), | |
| mask_head=dict( | |
| type='mmdet.FCNMaskHead', | |
| num_convs=4, | |
| in_channels=256, | |
| conv_out_channels=256, | |
| num_classes=num_classes, | |
| loss_mask=dict( | |
| type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))), | |
| # model training and testing settings | |
| train_cfg=dict( | |
| rpn=dict( | |
| assigner=dict( | |
| type='mmdet.MaxIoUAssigner', | |
| pos_iou_thr=0.7, | |
| neg_iou_thr=0.3, | |
| min_pos_iou=0.3, | |
| match_low_quality=True, | |
| ignore_iof_thr=-1), | |
| sampler=dict( | |
| type='mmdet.RandomSampler', | |
| num=256, | |
| pos_fraction=0.5, | |
| neg_pos_ub=-1, | |
| add_gt_as_proposals=False), | |
| allowed_border=-1, | |
| pos_weight=-1, | |
| debug=False), | |
| rpn_proposal=dict( | |
| nms_pre=2000, | |
| max_per_img=1000, | |
| nms=dict(type='nms', iou_threshold=0.7), | |
| min_bbox_size=0), | |
| rcnn=dict( | |
| assigner=dict( | |
| type='mmdet.MaxIoUAssigner', | |
| pos_iou_thr=0.5, | |
| neg_iou_thr=0.5, | |
| min_pos_iou=0.5, | |
| match_low_quality=True, | |
| ignore_iof_thr=-1), | |
| sampler=dict( | |
| type='mmdet.RandomSampler', | |
| num=512, | |
| pos_fraction=0.25, | |
| neg_pos_ub=-1, | |
| add_gt_as_proposals=True), | |
| mask_size=28, | |
| pos_weight=-1, | |
| debug=False)), | |
| test_cfg=dict( | |
| rpn=dict( | |
| nms_pre=1000, | |
| max_per_img=1000, | |
| nms=dict(type='nms', iou_threshold=0.7), | |
| min_bbox_size=0), | |
| rcnn=dict( | |
| score_thr=0.05, | |
| nms=dict(type='nms', iou_threshold=0.5), | |
| max_per_img=100, | |
| mask_thr_binary=0.5) | |
| ) | |
| ) | |
| model_cfg = dict( | |
| type='MMDetPLer', | |
| hyperparameters=dict( | |
| optimizer=optimizer, | |
| param_scheduler=param_scheduler, | |
| evaluator=evaluator, | |
| ), | |
| whole_model=model, | |
| ) | |
| task_name = 'ssdd_ins' | |
| exp_name = 'E20230526_0' | |
| logger = dict( | |
| type='WandbLogger', | |
| project=task_name, | |
| group='maskrcnn', | |
| name=exp_name | |
| ) | |
| # logger = None | |
| callbacks = [ | |
| param_scheduler_callback, | |
| dict( | |
| type='ModelCheckpoint', | |
| dirpath=f'results/{task_name}/{exp_name}/checkpoints', | |
| save_last=True, | |
| mode='max', | |
| monitor='valmap_0', | |
| save_top_k=2, | |
| filename='epoch_{epoch}-map_{valmap_0:.4f}' | |
| # mode='min', | |
| # monitor='train_loss', | |
| # save_top_k=2, | |
| # filename='epoch_{epoch}-trainloss_{train_loss:.4f}' | |
| ), | |
| dict( | |
| type='LearningRateMonitor', | |
| logging_interval='step' | |
| ) | |
| ] | |
| trainer_cfg = dict( | |
| compiled_model=False, | |
| accelerator="auto", | |
| strategy="auto", | |
| # strategy="ddp", | |
| # strategy='ddp_find_unused_parameters_true', | |
| # precision='32', | |
| # precision='16-mixed', | |
| devices=4, | |
| default_root_dir=f'results/{task_name}/{exp_name}', | |
| # default_root_dir='results/tmp', | |
| max_epochs=max_epochs, | |
| logger=logger, | |
| callbacks=callbacks, | |
| log_every_n_steps=10, | |
| check_val_every_n_epoch=10, | |
| benchmark=True, | |
| # sync_batchnorm=True, | |
| # fast_dev_run=True, | |
| # limit_train_batches=1, | |
| # limit_val_batches=0, | |
| # limit_test_batches=None, | |
| # limit_predict_batches=None, | |
| # overfit_batches=0.0, | |
| # val_check_interval=None, | |
| # num_sanity_val_steps=1, | |
| # enable_checkpointing=None, | |
| # enable_progress_bar=None, | |
| # enable_model_summary=None, | |
| # accumulate_grad_batches=32, | |
| # gradient_clip_val=15, | |
| # gradient_clip_algorithm='norm', | |
| # deterministic=None, | |
| # inference_mode: bool=True, | |
| use_distributed_sampler=True, | |
| # profiler="simple", | |
| # detect_anomaly=False, | |
| # barebones=False, | |
| # plugins=None, | |
| # reload_dataloaders_every_n_epochs=0, | |
| ) | |
| backend_args = None | |
| train_pipeline = [ | |
| dict(type='mmdet.LoadImageFromFile'), | |
| dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
| dict(type='mmdet.Resize', scale=image_size), | |
| dict(type='mmdet.RandomFlip', prob=0.5), | |
| dict(type='mmdet.PackDetInputs') | |
| ] | |
| test_pipeline = [ | |
| dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | |
| dict(type='mmdet.Resize', scale=image_size), | |
| # If you don't have a gt annotation, delete the pipeline | |
| dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
| dict( | |
| type='mmdet.PackDetInputs', | |
| meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
| 'scale_factor')) | |
| ] | |
| train_batch_size_per_gpu = 8 | |
| train_num_workers = 4 | |
| test_batch_size_per_gpu = 8 | |
| test_num_workers = 4 | |
| persistent_workers = True | |
| data_parent = '/Users/kyanchen/datasets/seg/SSDD' | |
| # data_parent = '/mnt/search01/dataset/cky_data/SSDD' | |
| dataset_type = 'SSDDInsSegDataset' | |
| val_loader = dict( | |
| batch_size=test_batch_size_per_gpu, | |
| num_workers=test_num_workers, | |
| persistent_workers=persistent_workers, | |
| pin_memory=True, | |
| dataset=dict( | |
| type=dataset_type, | |
| data_root=data_parent, | |
| ann_file='annotations/SSDD_instances_val.json', | |
| data_prefix=dict(img_path='imgs'), | |
| test_mode=True, | |
| filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
| pipeline=test_pipeline, | |
| backend_args=backend_args | |
| ) | |
| ) | |
| datamodule_cfg = dict( | |
| type='PLDataModule', | |
| train_loader=dict( | |
| batch_size=train_batch_size_per_gpu, | |
| num_workers=train_num_workers, | |
| persistent_workers=persistent_workers, | |
| pin_memory=True, | |
| dataset=dict( | |
| type=dataset_type, | |
| data_root=data_parent, | |
| ann_file='annotations/SSDD_instances_train.json', | |
| data_prefix=dict(img_path='imgs'), | |
| filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
| pipeline=train_pipeline, | |
| backend_args=backend_args) | |
| ), | |
| val_loader=val_loader, | |
| test_loader=val_loader, | |
| predict_loader=val_loader | |
| ) |