Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.dist import all_gather | |
from mmengine.model import ExponentialMovingAverage | |
from mmpretrain.registry import MODELS | |
from mmpretrain.structures import DataSample | |
from ..utils import batch_shuffle_ddp, batch_unshuffle_ddp | |
from .base import BaseSelfSupervisor | |
class DenseCL(BaseSelfSupervisor): | |
"""DenseCL. | |
Implementation of `Dense Contrastive Learning for Self-Supervised Visual | |
Pre-Training <https://arxiv.org/abs/2011.09157>`_. | |
Borrowed from the authors' code: `<https://github.com/WXinlong/DenseCL>`_. | |
The loss_lambda warmup is in `engine/hooks/densecl_hook.py`. | |
Args: | |
backbone (dict): Config dict for module of backbone. | |
neck (dict): Config dict for module of deep features to compact | |
feature vectors. | |
head (dict): Config dict for module of head functions. | |
queue_len (int): Number of negative keys maintained in the queue. | |
Defaults to 65536. | |
feat_dim (int): Dimension of compact feature vectors. Defaults to 128. | |
momentum (float): Momentum coefficient for the momentum-updated | |
encoder. Defaults to 0.999. | |
loss_lambda (float): Loss weight for the single and dense contrastive | |
loss. Defaults to 0.5. | |
pretrained (str, optional): The pretrained checkpoint path, support | |
local path and remote path. Defaults to None. | |
data_preprocessor (dict, optional): The config for preprocessing | |
input data. If None or no specified type, it will use | |
"SelfSupDataPreprocessor" as type. | |
See :class:`SelfSupDataPreprocessor` for more details. | |
Defaults to None. | |
init_cfg (Union[List[dict], dict], optional): Config dict for weight | |
initialization. Defaults to None. | |
""" | |
def __init__(self, | |
backbone: dict, | |
neck: dict, | |
head: dict, | |
queue_len: int = 65536, | |
feat_dim: int = 128, | |
momentum: float = 0.001, | |
loss_lambda: float = 0.5, | |
pretrained: Optional[str] = None, | |
data_preprocessor: Optional[dict] = None, | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__( | |
backbone=backbone, | |
neck=neck, | |
head=head, | |
pretrained=pretrained, | |
data_preprocessor=data_preprocessor, | |
init_cfg=init_cfg) | |
# create momentum model | |
self.encoder_k = ExponentialMovingAverage( | |
nn.Sequential(self.backbone, self.neck), momentum) | |
self.queue_len = queue_len | |
self.loss_lambda = loss_lambda | |
# create the queue | |
self.register_buffer('queue', torch.randn(feat_dim, queue_len)) | |
self.queue = nn.functional.normalize(self.queue, dim=0) | |
self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long)) | |
# create the second queue for dense output | |
self.register_buffer('queue2', torch.randn(feat_dim, queue_len)) | |
self.queue2 = nn.functional.normalize(self.queue2, dim=0) | |
self.register_buffer('queue2_ptr', torch.zeros(1, dtype=torch.long)) | |
def _dequeue_and_enqueue(self, keys: torch.Tensor) -> None: | |
"""Update queue.""" | |
# gather keys before updating queue | |
keys = torch.cat(all_gather(keys), dim=0) | |
batch_size = keys.shape[0] | |
ptr = int(self.queue_ptr) | |
assert self.queue_len % batch_size == 0 # for simplicity | |
# replace the keys at ptr (dequeue and enqueue) | |
self.queue[:, ptr:ptr + batch_size] = keys.transpose(0, 1) | |
ptr = (ptr + batch_size) % self.queue_len # move pointer | |
self.queue_ptr[0] = ptr | |
def _dequeue_and_enqueue2(self, keys: torch.Tensor) -> None: | |
"""Update queue2.""" | |
# gather keys before updating queue | |
keys = torch.cat(all_gather(keys), dim=0) | |
batch_size = keys.shape[0] | |
ptr = int(self.queue2_ptr) | |
assert self.queue_len % batch_size == 0 # for simplicity | |
# replace the keys at ptr (dequeue and enqueue) | |
self.queue2[:, ptr:ptr + batch_size] = keys.transpose(0, 1) | |
ptr = (ptr + batch_size) % self.queue_len # move pointer | |
self.queue2_ptr[0] = ptr | |
def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample], | |
**kwargs) -> Dict[str, torch.Tensor]: | |
"""The forward function in training. | |
Args: | |
inputs (List[torch.Tensor]): The input images. | |
data_samples (List[DataSample]): All elements required | |
during the forward function. | |
Returns: | |
Dict[str, torch.Tensor]: A dictionary of loss components. | |
""" | |
assert isinstance(inputs, list) | |
im_q = inputs[0] | |
im_k = inputs[1] | |
# compute query features | |
q_b = self.backbone(im_q) # backbone features | |
q, q_grid, q2 = self.neck(q_b) # queries: NxC; NxCxS^2 | |
q_b = q_b[0] | |
q_b = q_b.view(q_b.size(0), q_b.size(1), -1) | |
q = nn.functional.normalize(q, dim=1) | |
q2 = nn.functional.normalize(q2, dim=1) | |
q_grid = nn.functional.normalize(q_grid, dim=1) | |
q_b = nn.functional.normalize(q_b, dim=1) | |
# compute key features | |
with torch.no_grad(): # no gradient to keys | |
# update the key encoder | |
self.encoder_k.update_parameters( | |
nn.Sequential(self.backbone, self.neck)) | |
# shuffle for making use of BN | |
im_k, idx_unshuffle = batch_shuffle_ddp(im_k) | |
k_b = self.encoder_k.module[0](im_k) # backbone features | |
k, k_grid, k2 = self.encoder_k.module[1](k_b) # keys: NxC; NxCxS^2 | |
k_b = k_b[0] | |
k_b = k_b.view(k_b.size(0), k_b.size(1), -1) | |
k = nn.functional.normalize(k, dim=1) | |
k2 = nn.functional.normalize(k2, dim=1) | |
k_grid = nn.functional.normalize(k_grid, dim=1) | |
k_b = nn.functional.normalize(k_b, dim=1) | |
# undo shuffle | |
k = batch_unshuffle_ddp(k, idx_unshuffle) | |
k2 = batch_unshuffle_ddp(k2, idx_unshuffle) | |
k_grid = batch_unshuffle_ddp(k_grid, idx_unshuffle) | |
k_b = batch_unshuffle_ddp(k_b, idx_unshuffle) | |
# compute logits | |
# Einstein sum is more intuitive | |
# positive logits: Nx1 | |
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) | |
# negative logits: NxK | |
l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) | |
# feat point set sim | |
backbone_sim_matrix = torch.matmul(q_b.permute(0, 2, 1), k_b) | |
densecl_sim_ind = backbone_sim_matrix.max(dim=2)[1] # NxS^2 | |
indexed_k_grid = torch.gather(k_grid, 2, | |
densecl_sim_ind.unsqueeze(1).expand( | |
-1, k_grid.size(1), -1)) # NxCxS^2 | |
densecl_sim_q = (q_grid * indexed_k_grid).sum(1) # NxS^2 | |
# dense positive logits: NS^2X1 | |
l_pos_dense = densecl_sim_q.view(-1).unsqueeze(-1) | |
q_grid = q_grid.permute(0, 2, 1) | |
q_grid = q_grid.reshape(-1, q_grid.size(2)) | |
# dense negative logits: NS^2xK | |
l_neg_dense = torch.einsum( | |
'nc,ck->nk', [q_grid, self.queue2.clone().detach()]) | |
loss_single = self.head.loss(l_pos, l_neg) | |
loss_dense = self.head.loss(l_pos_dense, l_neg_dense) | |
losses = dict() | |
losses['loss_single'] = loss_single * (1 - self.loss_lambda) | |
losses['loss_dense'] = loss_dense * self.loss_lambda | |
self._dequeue_and_enqueue(k) | |
self._dequeue_and_enqueue2(k2) | |
return losses | |