Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Partly adopted from https://github.com/GT-Vision-Lab/VQA | |
# Copyright (c) 2014, Aishwarya Agrawal | |
from typing import List, Optional | |
import mmengine | |
from mmengine.evaluator import BaseMetric | |
from mmengine.logging import MMLogger | |
from mmpretrain.registry import METRICS | |
def _process_punctuation(inText): | |
import re | |
outText = inText | |
punct = [ | |
';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', | |
'>', '<', '@', '`', ',', '?', '!' | |
] | |
commaStrip = re.compile('(\d)(,)(\d)') # noqa: W605 | |
periodStrip = re.compile('(?!<=\d)(\.)(?!\d)') # noqa: W605 | |
for p in punct: | |
if (p + ' ' in inText or ' ' + p in inText) or (re.search( | |
commaStrip, inText) is not None): | |
outText = outText.replace(p, '') | |
else: | |
outText = outText.replace(p, ' ') | |
outText = periodStrip.sub('', outText, re.UNICODE) | |
return outText | |
def _process_digit_article(inText): | |
outText = [] | |
tempText = inText.lower().split() | |
articles = ['a', 'an', 'the'] | |
manualMap = { | |
'none': '0', | |
'zero': '0', | |
'one': '1', | |
'two': '2', | |
'three': '3', | |
'four': '4', | |
'five': '5', | |
'six': '6', | |
'seven': '7', | |
'eight': '8', | |
'nine': '9', | |
'ten': '10', | |
} | |
contractions = { | |
'aint': "ain't", | |
'arent': "aren't", | |
'cant': "can't", | |
'couldve': "could've", | |
'couldnt': "couldn't", | |
"couldn'tve": "couldn't've", | |
"couldnt've": "couldn't've", | |
'didnt': "didn't", | |
'doesnt': "doesn't", | |
'dont': "don't", | |
'hadnt': "hadn't", | |
"hadnt've": "hadn't've", | |
"hadn'tve": "hadn't've", | |
'hasnt': "hasn't", | |
'havent': "haven't", | |
'hed': "he'd", | |
"hed've": "he'd've", | |
"he'dve": "he'd've", | |
'hes': "he's", | |
'howd': "how'd", | |
'howll': "how'll", | |
'hows': "how's", | |
"Id've": "I'd've", | |
"I'dve": "I'd've", | |
'Im': "I'm", | |
'Ive': "I've", | |
'isnt': "isn't", | |
'itd': "it'd", | |
"itd've": "it'd've", | |
"it'dve": "it'd've", | |
'itll': "it'll", | |
"let's": "let's", | |
'maam': "ma'am", | |
'mightnt': "mightn't", | |
"mightnt've": "mightn't've", | |
"mightn'tve": "mightn't've", | |
'mightve': "might've", | |
'mustnt': "mustn't", | |
'mustve': "must've", | |
'neednt': "needn't", | |
'notve': "not've", | |
'oclock': "o'clock", | |
'oughtnt': "oughtn't", | |
"ow's'at": "'ow's'at", | |
"'ows'at": "'ow's'at", | |
"'ow'sat": "'ow's'at", | |
'shant': "shan't", | |
"shed've": "she'd've", | |
"she'dve": "she'd've", | |
"she's": "she's", | |
'shouldve': "should've", | |
'shouldnt': "shouldn't", | |
"shouldnt've": "shouldn't've", | |
"shouldn'tve": "shouldn't've", | |
"somebody'd": 'somebodyd', | |
"somebodyd've": "somebody'd've", | |
"somebody'dve": "somebody'd've", | |
'somebodyll': "somebody'll", | |
'somebodys': "somebody's", | |
'someoned': "someone'd", | |
"someoned've": "someone'd've", | |
"someone'dve": "someone'd've", | |
'someonell': "someone'll", | |
'someones': "someone's", | |
'somethingd': "something'd", | |
"somethingd've": "something'd've", | |
"something'dve": "something'd've", | |
'somethingll': "something'll", | |
'thats': "that's", | |
'thered': "there'd", | |
"thered've": "there'd've", | |
"there'dve": "there'd've", | |
'therere': "there're", | |
'theres': "there's", | |
'theyd': "they'd", | |
"theyd've": "they'd've", | |
"they'dve": "they'd've", | |
'theyll': "they'll", | |
'theyre': "they're", | |
'theyve': "they've", | |
'twas': "'twas", | |
'wasnt': "wasn't", | |
"wed've": "we'd've", | |
"we'dve": "we'd've", | |
'weve': "we've", | |
'werent': "weren't", | |
'whatll': "what'll", | |
'whatre': "what're", | |
'whats': "what's", | |
'whatve': "what've", | |
'whens': "when's", | |
'whered': "where'd", | |
'wheres': "where's", | |
'whereve': "where've", | |
'whod': "who'd", | |
"whod've": "who'd've", | |
"who'dve": "who'd've", | |
'wholl': "who'll", | |
'whos': "who's", | |
'whove': "who've", | |
'whyll': "why'll", | |
'whyre': "why're", | |
'whys': "why's", | |
'wont': "won't", | |
'wouldve': "would've", | |
'wouldnt': "wouldn't", | |
"wouldnt've": "wouldn't've", | |
"wouldn'tve": "wouldn't've", | |
'yall': "y'all", | |
"yall'll": "y'all'll", | |
"y'allll": "y'all'll", | |
"yall'd've": "y'all'd've", | |
"y'alld've": "y'all'd've", | |
"y'all'dve": "y'all'd've", | |
'youd': "you'd", | |
"youd've": "you'd've", | |
"you'dve": "you'd've", | |
'youll': "you'll", | |
'youre': "you're", | |
'youve': "you've", | |
} | |
for word in tempText: | |
word = manualMap.setdefault(word, word) | |
if word not in articles: | |
outText.append(word) | |
for wordId, word in enumerate(outText): | |
if word in contractions: | |
outText[wordId] = contractions[word] | |
outText = ' '.join(outText) | |
return outText | |
class VQAAcc(BaseMetric): | |
'''VQA Acc metric. | |
Args: | |
collect_device (str): Device name used for collecting results from | |
different ranks during distributed training. Must be 'cpu' or | |
'gpu'. Defaults to 'cpu'. | |
prefix (str, optional): The prefix that will be added in the metric | |
names to disambiguate homonymous metrics of different evaluators. | |
If prefix is not provided in the argument, self.default_prefix | |
will be used instead. Should be modified according to the | |
`retrieval_type` for unambiguous results. Defaults to TR. | |
''' | |
default_prefix = 'VQA' | |
def __init__(self, | |
full_score_weight: float = 0.3, | |
collect_device: str = 'cpu', | |
prefix: Optional[str] = None): | |
super().__init__(collect_device=collect_device, prefix=prefix) | |
self.full_score_weight = full_score_weight | |
def process(self, data_batch, data_samples): | |
"""Process one batch of data samples. | |
The processed results should be stored in ``self.results``, which will | |
be used to computed the metrics when all batches have been processed. | |
Args: | |
data_batch: A batch of data from the dataloader. | |
data_samples (Sequence[dict]): A batch of outputs from the model. | |
""" | |
for sample in data_samples: | |
gt_answer = sample.get('gt_answer') | |
gt_answer_weight = sample.get('gt_answer_weight') | |
if isinstance(gt_answer, str): | |
gt_answer = [gt_answer] | |
if gt_answer_weight is None: | |
gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer) | |
result = { | |
'pred_answer': sample.get('pred_answer'), | |
'gt_answer': gt_answer, | |
'gt_answer_weight': gt_answer_weight, | |
} | |
self.results.append(result) | |
def compute_metrics(self, results: List): | |
"""Compute the metrics from processed results. | |
Args: | |
results (dict): The processed results of each batch. | |
Returns: | |
Dict: The computed metrics. The keys are the names of the metrics, | |
and the values are corresponding results. | |
""" | |
acc = [] | |
for result in results: | |
pred_answer = self._process_answer(result['pred_answer']) | |
gt_answer = [ | |
self._process_answer(answer) for answer in result['gt_answer'] | |
] | |
answer_weight = result['gt_answer_weight'] | |
weight_sum = 0 | |
for i, gt in enumerate(gt_answer): | |
if gt == pred_answer: | |
weight_sum += answer_weight[i] | |
vqa_acc = min(1.0, weight_sum / self.full_score_weight) | |
acc.append(vqa_acc) | |
accuracy = sum(acc) / len(acc) * 100 | |
metrics = {'acc': accuracy} | |
return metrics | |
def _process_answer(self, answer): | |
answer = answer.replace('\n', ' ') | |
answer = answer.replace('\t', ' ') | |
answer = answer.strip() | |
answer = _process_punctuation(answer) | |
answer = _process_digit_article(answer) | |
return answer | |
class ReportVQA(BaseMetric): | |
"""Dump VQA result to the standard json format for VQA evaluation. | |
Args: | |
file_path (str): The file path to save the result file. | |
collect_device (str): Device name used for collecting results from | |
different ranks during distributed training. Must be 'cpu' or | |
'gpu'. Defaults to 'cpu'. | |
prefix (str, optional): The prefix that will be added in the metric | |
names to disambiguate homonymous metrics of different evaluators. | |
If prefix is not provided in the argument, self.default_prefix | |
will be used instead. Should be modified according to the | |
`retrieval_type` for unambiguous results. Defaults to TR. | |
""" | |
default_prefix = 'VQA' | |
def __init__(self, | |
file_path: str, | |
collect_device: str = 'cpu', | |
prefix: Optional[str] = None): | |
super().__init__(collect_device=collect_device, prefix=prefix) | |
if not file_path.endswith('.json'): | |
raise ValueError('The output file must be a json file.') | |
self.file_path = file_path | |
def process(self, data_batch, data_samples) -> None: | |
"""transfer tensors in predictions to CPU.""" | |
for sample in data_samples: | |
question_id = sample['question_id'] | |
pred_answer = sample['pred_answer'] | |
result = { | |
'question_id': int(question_id), | |
'answer': pred_answer, | |
} | |
self.results.append(result) | |
def compute_metrics(self, results: List): | |
"""Dump the result to json file.""" | |
mmengine.dump(results, self.file_path) | |
logger = MMLogger.get_current_instance() | |
logger.info(f'Results has been saved to {self.file_path}.') | |
return {} | |