KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
15.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..losses import smooth_l1_loss
from ..task_modules.samplers import PseudoSampler
from ..utils import multi_apply
from .anchor_head import AnchorHead
# TODO: add loss evaluator for SSD
@MODELS.register_module()
class SSDHead(AnchorHead):
"""Implementation of `SSD head <https://arxiv.org/abs/1512.02325>`_
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (Sequence[int]): Number of channels in the input feature
map.
stacked_convs (int): Number of conv layers in cls and reg tower.
Defaults to 0.
feat_channels (int): Number of hidden channels when stacked_convs
> 0. Defaults to 256.
use_depthwise (bool): Whether to use DepthwiseSeparableConv.
Defaults to False.
conv_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config conv layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config norm layer. Defaults to None.
act_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config activation layer. Defaults to None.
anchor_generator (:obj:`ConfigDict` or dict): Config dict for anchor
generator.
bbox_coder (:obj:`ConfigDict` or dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Defaults to False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
train_cfg (:obj:`ConfigDict` or dict, Optional): Training config of
anchor head.
test_cfg (:obj:`ConfigDict` or dict, Optional): Testing config of
anchor head.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], Optional): Initialization config dict.
""" # noqa: W605
def __init__(
self,
num_classes: int = 80,
in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256),
stacked_convs: int = 0,
feat_channels: int = 256,
use_depthwise: bool = False,
conv_cfg: Optional[ConfigType] = None,
norm_cfg: Optional[ConfigType] = None,
act_cfg: Optional[ConfigType] = None,
anchor_generator: ConfigType = dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
strides=[8, 16, 32, 64, 100, 300],
ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
basesize_ratio_range=(0.1, 0.9)),
bbox_coder: ConfigType = dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
reg_decoded_bbox: bool = False,
train_cfg: Optional[ConfigType] = None,
test_cfg: Optional[ConfigType] = None,
init_cfg: MultiConfig = dict(
type='Xavier', layer='Conv2d', distribution='uniform', bias=0)
) -> None:
super(AnchorHead, self).__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.in_channels = in_channels
self.stacked_convs = stacked_convs
self.feat_channels = feat_channels
self.use_depthwise = use_depthwise
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.cls_out_channels = num_classes + 1 # add background class
self.prior_generator = TASK_UTILS.build(anchor_generator)
# Usually the numbers of anchors for each level are the same
# except SSD detectors. So it is an int in the most dense
# heads but a list of int in SSDHead
self.num_base_priors = self.prior_generator.num_base_priors
self._init_layers()
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.reg_decoded_bbox = reg_decoded_bbox
self.use_sigmoid_cls = False
self.cls_focal_loss = False
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
# TODO: Use registry to choose ConvModule type
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
for channel, num_base_priors in zip(self.in_channels,
self.num_base_priors):
cls_layers = []
reg_layers = []
in_channel = channel
# build stacked conv tower, not used in default ssd
for i in range(self.stacked_convs):
cls_layers.append(
conv(
in_channel,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_layers.append(
conv(
in_channel,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
in_channel = self.feat_channels
# SSD-Lite head
if self.use_depthwise:
cls_layers.append(
ConvModule(
in_channel,
in_channel,
3,
padding=1,
groups=in_channel,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_layers.append(
ConvModule(
in_channel,
in_channel,
3,
padding=1,
groups=in_channel,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
cls_layers.append(
nn.Conv2d(
in_channel,
num_base_priors * self.cls_out_channels,
kernel_size=1 if self.use_depthwise else 3,
padding=0 if self.use_depthwise else 1))
reg_layers.append(
nn.Conv2d(
in_channel,
num_base_priors * 4,
kernel_size=1 if self.use_depthwise else 3,
padding=0 if self.use_depthwise else 1))
self.cls_convs.append(nn.Sequential(*cls_layers))
self.reg_convs.append(nn.Sequential(*reg_layers))
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple[list[Tensor], list[Tensor]]: A tuple of cls_scores list and
bbox_preds list.
- cls_scores (list[Tensor]): Classification scores for all scale \
levels, each is a 4D-tensor, the channels number is \
num_anchors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale \
levels, each is a 4D-tensor, the channels number is \
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for feat, reg_conv, cls_conv in zip(x, self.reg_convs, self.cls_convs):
cls_scores.append(cls_conv(feat))
bbox_preds.append(reg_conv(feat))
return cls_scores, bbox_preds
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
anchor: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
bbox_weights: Tensor,
avg_factor: int) -> Tuple[Tensor, Tensor]:
"""Compute loss of a single image.
Args:
cls_score (Tensor): Box scores for eachimage
Has shape (num_total_anchors, num_classes).
bbox_pred (Tensor): Box energies / deltas for each image
level with shape (num_total_anchors, 4).
anchors (Tensor): Box reference for each scale level with shape
(num_total_anchors, 4).
labels (Tensor): Labels of each anchors with shape
(num_total_anchors,).
label_weights (Tensor): Label weights of each anchor with shape
(num_total_anchors,)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (num_total_anchors, 4).
bbox_weights (Tensor): BBox regression loss weights of each anchor
with shape (num_total_anchors, 4).
avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor, Tensor]: A tuple of cls loss and bbox loss of one
feature map.
"""
loss_cls_all = F.cross_entropy(
cls_score, labels, reduction='none') * label_weights
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero(
as_tuple=False).reshape(-1)
neg_inds = (labels == self.num_classes).nonzero(
as_tuple=False).view(-1)
num_pos_samples = pos_inds.size(0)
num_neg_samples = self.train_cfg['neg_pos_ratio'] * num_pos_samples
if num_neg_samples > neg_inds.size(0):
num_neg_samples = neg_inds.size(0)
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
loss_cls_pos = loss_cls_all[pos_inds].sum()
loss_cls_neg = topk_loss_cls_neg.sum()
loss_cls = (loss_cls_pos + loss_cls_neg) / avg_factor
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)
loss_bbox = smooth_l1_loss(
bbox_pred,
bbox_targets,
bbox_weights,
beta=self.train_cfg['smoothl1_beta'],
avg_factor=avg_factor)
return loss_cls[None], loss_bbox
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, List[Tensor]]:
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, list[Tensor]]: A dictionary of loss components. the dict
has components below:
- loss_cls (list[Tensor]): A list containing each feature map \
classification loss.
- loss_bbox (list[Tensor]): A list containing each feature map \
regression loss.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
unmap_outputs=True)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
avg_factor) = cls_reg_targets
num_images = len(batch_img_metas)
all_cls_scores = torch.cat([
s.permute(0, 2, 3, 1).reshape(
num_images, -1, self.cls_out_channels) for s in cls_scores
], 1)
all_labels = torch.cat(labels_list, -1).view(num_images, -1)
all_label_weights = torch.cat(label_weights_list,
-1).view(num_images, -1)
all_bbox_preds = torch.cat([
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
for b in bbox_preds
], -2)
all_bbox_targets = torch.cat(bbox_targets_list,
-2).view(num_images, -1, 4)
all_bbox_weights = torch.cat(bbox_weights_list,
-2).view(num_images, -1, 4)
# concat all level anchors to a single tensor
all_anchors = []
for i in range(num_images):
all_anchors.append(torch.cat(anchor_list[i]))
losses_cls, losses_bbox = multi_apply(
self.loss_by_feat_single,
all_cls_scores,
all_bbox_preds,
all_anchors,
all_labels,
all_label_weights,
all_bbox_targets,
all_bbox_weights,
avg_factor=avg_factor)
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)