KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
10.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import torch
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from ..utils import multi_apply, unpack_gt_instances
from .gfl_head import GFLHead
@MODELS.register_module()
class LDHead(GFLHead):
"""Localization distillation Head. (Short description)
It utilizes the learned bbox distributions to transfer the localization
dark knowledge from teacher to student. Original paper: `Localization
Distillation for Object Detection. <https://arxiv.org/abs/2102.12252>`_
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
loss_ld (:obj:`ConfigDict` or dict): Config of Localization
Distillation Loss (LD), T is the temperature for distillation.
"""
def __init__(self,
num_classes: int,
in_channels: int,
loss_ld: ConfigType = dict(
type='LocalizationDistillationLoss',
loss_weight=0.25,
T=10),
**kwargs) -> dict:
super().__init__(
num_classes=num_classes, in_channels=in_channels, **kwargs)
self.loss_ld = MODELS.build(loss_ld)
def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
bbox_pred: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
stride: Tuple[int], soft_targets: Tensor,
avg_factor: int):
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
cls_score (Tensor): Cls and quality joint scores for each scale
level has shape (N, num_classes, H, W).
bbox_pred (Tensor): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
stride (tuple): Stride in this scale level.
soft_targets (Tensor): Soft BBox regression targets.
avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
dict[tuple, Tensor]: Loss components and weight targets.
"""
assert stride[0] == stride[1], 'h stride is not equal to w stride!'
anchors = anchors.reshape(-1, 4)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(-1, 4 * (self.reg_max + 1))
soft_targets = soft_targets.permute(0, 2, 3,
1).reshape(-1,
4 * (self.reg_max + 1))
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
score = label_weights.new_zeros(labels.shape)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]
weight_targets = cls_score.detach().sigmoid()
weight_targets = weight_targets.max(dim=1)[0][pos_inds]
pos_bbox_pred_corners = self.integral(pos_bbox_pred)
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchor_centers, pos_bbox_pred_corners)
pos_decode_bbox_targets = pos_bbox_targets / stride[0]
score[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
pos_soft_targets = soft_targets[pos_inds]
soft_corners = pos_soft_targets.reshape(-1, self.reg_max + 1)
target_corners = self.bbox_coder.encode(pos_anchor_centers,
pos_decode_bbox_targets,
self.reg_max).reshape(-1)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
weight=weight_targets,
avg_factor=1.0)
# dfl loss
loss_dfl = self.loss_dfl(
pred_corners,
target_corners,
weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
avg_factor=4.0)
# ld loss
loss_ld = self.loss_ld(
pred_corners,
soft_corners,
weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
avg_factor=4.0)
else:
loss_ld = bbox_pred.sum() * 0
loss_bbox = bbox_pred.sum() * 0
loss_dfl = bbox_pred.sum() * 0
weight_targets = bbox_pred.new_tensor(0)
# cls (qfl) loss
loss_cls = self.loss_cls(
cls_score, (labels, score),
weight=label_weights,
avg_factor=avg_factor)
return loss_cls, loss_bbox, loss_dfl, loss_ld, weight_targets.sum()
def loss(self, x: List[Tensor], out_teacher: Tuple[Tensor],
batch_data_samples: SampleList) -> dict:
"""
Args:
x (list[Tensor]): Features from FPN.
out_teacher (tuple[Tensor]): The output of teacher.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
tuple[dict, list]: The loss components and proposals of each image.
- losses (dict[str, Tensor]): A dictionary of loss components.
- proposal_list (list[Tensor]): Proposals of each image.
"""
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= outputs
outs = self(x)
soft_targets = out_teacher[1]
loss_inputs = outs + (batch_gt_instances, batch_img_metas,
soft_targets)
losses = self.loss_by_feat(
*loss_inputs, batch_gt_instances_ignore=batch_gt_instances_ignore)
return losses
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
soft_targets: List[Tensor],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Cls and quality scores for each scale
level has shape (N, num_classes, H, W).
bbox_preds (list[Tensor]): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
soft_targets (list[Tensor]): Soft BBox regression targets.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_reg_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
losses_cls, losses_bbox, losses_dfl, losses_ld, \
avg_factor = multi_apply(
self.loss_by_feat_single,
anchor_list,
cls_scores,
bbox_preds,
labels_list,
label_weights_list,
bbox_targets_list,
self.prior_generator.strides,
soft_targets,
avg_factor=avg_factor)
avg_factor = sum(avg_factor) + 1e-6
avg_factor = reduce_mean(avg_factor).item()
losses_bbox = [x / avg_factor for x in losses_bbox]
losses_dfl = [x / avg_factor for x in losses_dfl]
return dict(
loss_cls=losses_cls,
loss_bbox=losses_bbox,
loss_dfl=losses_dfl,
loss_ld=losses_ld)