KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
36.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmengine.model import bias_init_with_prob, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, reduce_mean)
from ..task_modules.prior_generators import anchor_inside_flags
from ..utils import images_to_levels, multi_apply, unmap
from .anchor_head import AnchorHead
EPS = 1e-12
@MODELS.register_module()
class DDODHead(AnchorHead):
"""Detection Head of `DDOD <https://arxiv.org/abs/2107.02963>`_.
DDOD head decomposes conjunctions lying in most current one-stage
detectors via label assignment disentanglement, spatial feature
disentanglement, and pyramid supervision disentanglement.
Args:
num_classes (int): Number of categories excluding the
background category.
in_channels (int): Number of channels in the input feature map.
stacked_convs (int): The number of stacked Conv. Defaults to 4.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True.
norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head.
Defaults to dict(type='GN', num_groups=32, requires_grad=True).
loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0).
"""
def __init__(self,
num_classes: int,
in_channels: int,
stacked_convs: int = 4,
conv_cfg: OptConfigType = None,
use_dcn: bool = True,
norm_cfg: ConfigType = dict(
type='GN', num_groups=32, requires_grad=True),
loss_iou: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
**kwargs) -> None:
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.use_dcn = use_dcn
super().__init__(num_classes, in_channels, **kwargs)
if self.train_cfg:
self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner'])
self.reg_assigner = TASK_UTILS.build(
self.train_cfg['reg_assigner'])
self.loss_iou = MODELS.build(loss_iou)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=dict(type='DCN', deform_groups=1)
if i == 0 and self.use_dcn else self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=dict(type='DCN', deform_groups=1)
if i == 0 and self.use_dcn else self.conv_cfg,
norm_cfg=self.norm_cfg))
self.atss_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
3,
padding=1)
self.atss_reg = nn.Conv2d(
self.feat_channels, self.num_base_priors * 4, 3, padding=1)
self.atss_iou = nn.Conv2d(
self.feat_channels, self.num_base_priors * 1, 3, padding=1)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
# we use the global list in loss
self.cls_num_pos_samples_per_level = [
0. for _ in range(len(self.prior_generator.strides))
]
self.reg_num_pos_samples_per_level = [
0. for _ in range(len(self.prior_generator.strides))
]
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
normal_init(self.atss_reg, std=0.01)
normal_init(self.atss_iou, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.atss_cls, std=0.01, bias=bias_cls)
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: A tuple of classification scores, bbox predictions,
and iou predictions.
- cls_scores (list[Tensor]): Classification scores for all \
scale levels, each is a 4D-tensor, the channels number is \
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all \
scale levels, each is a 4D-tensor, the channels number is \
num_base_priors * 4.
- iou_preds (list[Tensor]): IoU scores for all scale levels, \
each is a 4D-tensor, the channels number is num_base_priors * 1.
"""
return multi_apply(self.forward_single, x, self.scales)
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]:
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
Returns:
tuple:
- cls_score (Tensor): Cls scores for a single scale level \
the channels number is num_base_priors * num_classes.
- bbox_pred (Tensor): Box energies / deltas for a single \
scale level, the channels number is num_base_priors * 4.
- iou_pred (Tensor): Iou for a single scale level, the \
channel number is (N, num_base_priors * 1, H, W).
"""
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.atss_cls(cls_feat)
# we just follow atss, not apply exp in bbox_pred
bbox_pred = scale(self.atss_reg(reg_feat)).float()
iou_pred = self.atss_iou(reg_feat)
return cls_score, bbox_pred, iou_pred
def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor,
label_weights: Tensor,
reweight_factor: List[float],
avg_factor: float) -> Tuple[Tensor]:
"""Compute cls loss of a single scale level.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_base_priors * num_classes, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
reweight_factor (List[float]): Reweight factor for cls and reg
loss.
avg_factor (float): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor]: A tuple of loss components.
"""
cls_score = cls_score.permute(0, 2, 3, 1).reshape(
-1, self.cls_out_channels).contiguous()
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor)
return reweight_factor * loss_cls,
def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor,
iou_pred: Tensor, labels,
label_weights: Tensor, bbox_targets: Tensor,
bbox_weights: Tensor,
reweight_factor: List[float],
avg_factor: float) -> Tuple[Tensor, Tensor]:
"""Compute reg loss of a single scale level based on the features
extracted by the detection head.
Args:
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
bbox_pred (Tensor): Box energies / deltas for each scale
level with shape (N, num_base_priors * 4, H, W).
iou_pred (Tensor): Iou for a single scale level, the
channel number is (N, num_base_priors * 1, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4)
reweight_factor (List[float]): Reweight factor for cls and reg
loss.
avg_factor (float): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor, Tensor]: A tuple of loss components.
"""
anchors = anchors.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, )
bbox_targets = bbox_targets.reshape(-1, 4)
bbox_weights = bbox_weights.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
iou_targets = label_weights.new_zeros(labels.shape)
iou_weights = label_weights.new_zeros(labels.shape)
iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero(
as_tuple=False)] = 1.
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
&
(labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchors, pos_bbox_pred)
pos_decode_bbox_targets = self.bbox_coder.decode(
pos_anchors, pos_bbox_targets)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
avg_factor=avg_factor)
iou_targets[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
loss_iou = self.loss_iou(
iou_pred, iou_targets, iou_weights, avg_factor=avg_factor)
else:
loss_bbox = bbox_pred.sum() * 0
loss_iou = iou_pred.sum() * 0
return reweight_factor * loss_bbox, reweight_factor * loss_iou
def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]:
"""Compute reweight_factor for regression and classification loss."""
# get pos samples for each level
bg_class_ind = self.num_classes
for ii, each_level_label in enumerate(labels_list):
pos_inds = ((each_level_label >= 0) &
(each_level_label < bg_class_ind)).nonzero(
as_tuple=False).squeeze(1)
self.cls_num_pos_samples_per_level[ii] += len(pos_inds)
# get reweight factor from 1 ~ 2 with bilinear interpolation
min_pos_samples = min(self.cls_num_pos_samples_per_level)
max_pos_samples = max(self.cls_num_pos_samples_per_level)
interval = 1. / (max_pos_samples - min_pos_samples + 1e-10)
reweight_factor_per_level = []
for pos_samples in self.cls_num_pos_samples_per_level:
factor = 2. - (pos_samples - min_pos_samples) * interval
reweight_factor_per_level.append(factor)
return reweight_factor_per_level
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
iou_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_base_priors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_base_priors * 4, H, W)
iou_preds (list[Tensor]): Score factor for all scale level,
each is a 4D-tensor, has shape (batch_size, 1, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
# calculate common vars for cls and reg assigners at once
targets_com = self.process_predictions_and_anchors(
anchor_list, valid_flag_list, cls_scores, bbox_preds,
batch_img_metas, batch_gt_instances_ignore)
(anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list,
bbox_pred_list, batch_gt_instances_ignore) = targets_com
# classification branch assigner
cls_targets = self.get_cls_targets(
anchor_list,
valid_flag_list,
num_level_anchors_list,
cls_score_list,
bbox_pred_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(cls_anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
avg_factor = max(avg_factor, 1.0)
reweight_factor_per_level = self.calc_reweight_factor(labels_list)
cls_losses_cls, = multi_apply(
self.loss_cls_by_feat_single,
cls_scores,
labels_list,
label_weights_list,
reweight_factor_per_level,
avg_factor=avg_factor)
# regression branch assigner
reg_targets = self.get_reg_targets(
anchor_list,
valid_flag_list,
num_level_anchors_list,
cls_score_list,
bbox_pred_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(reg_anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = reg_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
avg_factor = max(avg_factor, 1.0)
reweight_factor_per_level = self.calc_reweight_factor(labels_list)
reg_losses_bbox, reg_losses_iou = multi_apply(
self.loss_reg_by_feat_single,
reg_anchor_list,
bbox_preds,
iou_preds,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
reweight_factor_per_level,
avg_factor=avg_factor)
return dict(
loss_cls=cls_losses_cls,
loss_bbox=reg_losses_bbox,
loss_iou=reg_losses_iou)
def process_predictions_and_anchors(
self,
anchor_list: List[List[Tensor]],
valid_flag_list: List[List[Tensor]],
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> tuple:
"""Compute common vars for regression and classification targets.
Args:
anchor_list (List[List[Tensor]]): anchors of each image.
valid_flag_list (List[List[Tensor]]): Valid flags of each image.
cls_scores (List[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Return:
tuple[Tensor]: A tuple of common loss vars.
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
num_level_anchors_list = [num_level_anchors] * num_imgs
anchor_list_ = []
valid_flag_list_ = []
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list_.append(torch.cat(anchor_list[i]))
valid_flag_list_.append(torch.cat(valid_flag_list[i]))
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None for _ in range(num_imgs)]
num_levels = len(cls_scores)
cls_score_list = []
bbox_pred_list = []
mlvl_cls_score_list = [
cls_score.permute(0, 2, 3, 1).reshape(
num_imgs, -1, self.num_base_priors * self.cls_out_channels)
for cls_score in cls_scores
]
mlvl_bbox_pred_list = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_base_priors * 4)
for bbox_pred in bbox_preds
]
for i in range(num_imgs):
mlvl_cls_tensor_list = [
mlvl_cls_score_list[j][i] for j in range(num_levels)
]
mlvl_bbox_tensor_list = [
mlvl_bbox_pred_list[j][i] for j in range(num_levels)
]
cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0)
cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0)
cls_score_list.append(cat_mlvl_cls_score)
bbox_pred_list.append(cat_mlvl_bbox_pred)
return (anchor_list_, valid_flag_list_, num_level_anchors_list,
cls_score_list, bbox_pred_list, batch_gt_instances_ignore)
def get_cls_targets(self,
anchor_list: List[Tensor],
valid_flag_list: List[Tensor],
num_level_anchors_list: List[int],
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs: bool = True) -> tuple:
"""Get cls targets for DDOD head.
This method is almost the same as `AnchorHead.get_targets()`.
Besides returning the targets as the parent method does,
it also returns the anchors as the first element of the
returned tuple.
Args:
anchor_list (list[Tensor]): anchors of each image.
valid_flag_list (list[Tensor]): Valid flags of each image.
num_level_anchors_list (list[Tensor]): Number of anchors of each
scale level of all image.
cls_score_list (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Return:
tuple[Tensor]: A tuple of cls targets components.
"""
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
anchor_list,
valid_flag_list,
cls_score_list,
bbox_pred_list,
num_level_anchors_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs,
is_cls_assigner=True)
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0])
labels_list = images_to_levels(all_labels, num_level_anchors_list[0])
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors_list[0])
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors_list[0])
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors_list[0])
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, avg_factor)
def get_reg_targets(self,
anchor_list: List[Tensor],
valid_flag_list: List[Tensor],
num_level_anchors_list: List[int],
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs: bool = True) -> tuple:
"""Get reg targets for DDOD head.
This method is almost the same as `AnchorHead.get_targets()` when
is_cls_assigner is False. Besides returning the targets as the parent
method does, it also returns the anchors as the first element of the
returned tuple.
Args:
anchor_list (list[Tensor]): anchors of each image.
valid_flag_list (list[Tensor]): Valid flags of each image.
num_level_anchors_list (list[Tensor]): Number of anchors of each
scale level of all image.
cls_score_list (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Return:
tuple[Tensor]: A tuple of reg targets components.
"""
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
anchor_list,
valid_flag_list,
cls_score_list,
bbox_pred_list,
num_level_anchors_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs,
is_cls_assigner=False)
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0])
labels_list = images_to_levels(all_labels, num_level_anchors_list[0])
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors_list[0])
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors_list[0])
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors_list[0])
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, avg_factor)
def _get_targets_single(self,
flat_anchors: Tensor,
valid_flags: Tensor,
cls_scores: Tensor,
bbox_preds: Tensor,
num_level_anchors: List[int],
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True,
is_cls_assigner: bool = True) -> tuple:
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image,
which are concatenated into a single tensor of shape
(num_base_priors, 4).
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_base_priors,).
cls_scores (Tensor): Classification scores for all scale
levels of the image.
bbox_preds (Tensor): Box energies / deltas for all scale
levels of the image.
num_level_anchors (List[int]): Number of anchors of each
scale level.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
is_cls_assigner (bool): Classification or regression.
Defaults to True.
Returns:
tuple: N is the number of total anchors in the image.
- anchors (Tensor): all anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with \
shape (N, ).
- label_weights (Tensor): Label weights of all anchor in the \
image with shape (N, ).
- bbox_targets (Tensor): BBox targets of all anchors in the \
image with shape (N, 4).
- bbox_weights (Tensor): BBox weights of all anchors in the \
image with shape (N, 4)
- pos_inds (Tensor): Indices of positive anchor with shape \
(num_pos, ).
- neg_inds (Tensor): Indices of negative anchor with shape \
(num_neg, ).
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
raise ValueError(
'There is no valid anchor inside the image boundary. Please '
'check the image size and anchor sizes, or set '
'``allowed_border`` to -1 to skip the condition.')
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
num_level_anchors_inside = self.get_num_level_anchors_inside(
num_level_anchors, inside_flags)
bbox_preds_valid = bbox_preds[inside_flags, :]
cls_scores_valid = cls_scores[inside_flags, :]
assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner
# decode prediction out of assigner
bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid)
pred_instances = InstanceData(
priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid)
assign_result = assigner.assign(
pred_instances=pred_instances,
num_level_priors=num_level_anchors_inside,
gt_instances=gt_instances,
gt_instances_ignore=gt_instances_ignore)
sampling_result = self.sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds, sampling_result)
def get_num_level_anchors_inside(self, num_level_anchors: List[int],
inside_flags: Tensor) -> List[int]:
"""Get the anchors of each scale level inside.
Args:
num_level_anchors (list[int]): Number of anchors of each
scale level.
inside_flags (Tensor): Multi level inside flags of the image,
which are concatenated into a single tensor of
shape (num_base_priors,).
Returns:
list[int]: Number of anchors of each scale level inside.
"""
split_inside_flags = torch.split(inside_flags, num_level_anchors)
num_level_anchors_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_anchors_inside