KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
7.74 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptMultiConfig
from ..layers import ResLayer
from .resnet import BasicBlock
class HourglassModule(BaseModule):
"""Hourglass Module for HourglassNet backbone.
Generate module recursively and use BasicBlock as the base unit.
Args:
depth (int): Depth of current HourglassModule.
stage_channels (list[int]): Feature channels of sub-modules in current
and follow-up HourglassModule.
stage_blocks (list[int]): Number of sub-modules stacked in current and
follow-up HourglassModule.
norm_cfg (ConfigType): Dictionary to construct and config norm layer.
Defaults to `dict(type='BN', requires_grad=True)`
upsample_cfg (ConfigType): Config dict for interpolate layer.
Defaults to `dict(mode='nearest')`
init_cfg (dict or ConfigDict, optional): the config to control the
initialization.
"""
def __init__(self,
depth: int,
stage_channels: List[int],
stage_blocks: List[int],
norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
upsample_cfg: ConfigType = dict(mode='nearest'),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg)
self.depth = depth
cur_block = stage_blocks[0]
next_block = stage_blocks[1]
cur_channel = stage_channels[0]
next_channel = stage_channels[1]
self.up1 = ResLayer(
BasicBlock, cur_channel, cur_channel, cur_block, norm_cfg=norm_cfg)
self.low1 = ResLayer(
BasicBlock,
cur_channel,
next_channel,
cur_block,
stride=2,
norm_cfg=norm_cfg)
if self.depth > 1:
self.low2 = HourglassModule(depth - 1, stage_channels[1:],
stage_blocks[1:])
else:
self.low2 = ResLayer(
BasicBlock,
next_channel,
next_channel,
next_block,
norm_cfg=norm_cfg)
self.low3 = ResLayer(
BasicBlock,
next_channel,
cur_channel,
cur_block,
norm_cfg=norm_cfg,
downsample_first=False)
self.up2 = F.interpolate
self.upsample_cfg = upsample_cfg
def forward(self, x: torch.Tensor) -> nn.Module:
"""Forward function."""
up1 = self.up1(x)
low1 = self.low1(x)
low2 = self.low2(low1)
low3 = self.low3(low2)
# Fixing `scale factor` (e.g. 2) is common for upsampling, but
# in some cases the spatial size is mismatched and error will arise.
if 'scale_factor' in self.upsample_cfg:
up2 = self.up2(low3, **self.upsample_cfg)
else:
shape = up1.shape[2:]
up2 = self.up2(low3, size=shape, **self.upsample_cfg)
return up1 + up2
@MODELS.register_module()
class HourglassNet(BaseModule):
"""HourglassNet backbone.
Stacked Hourglass Networks for Human Pose Estimation.
More details can be found in the `paper
<https://arxiv.org/abs/1603.06937>`_ .
Args:
downsample_times (int): Downsample times in a HourglassModule.
num_stacks (int): Number of HourglassModule modules stacked,
1 for Hourglass-52, 2 for Hourglass-104.
stage_channels (Sequence[int]): Feature channel of each sub-module in a
HourglassModule.
stage_blocks (Sequence[int]): Number of sub-modules stacked in a
HourglassModule.
feat_channel (int): Feature channel of conv after a HourglassModule.
norm_cfg (norm_cfg): Dictionary to construct and config norm layer.
init_cfg (dict or ConfigDict, optional): the config to control the
initialization.
Example:
>>> from mmdet.models import HourglassNet
>>> import torch
>>> self = HourglassNet()
>>> self.eval()
>>> inputs = torch.rand(1, 3, 511, 511)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
... print(tuple(level_output.shape))
(1, 256, 128, 128)
(1, 256, 128, 128)
"""
def __init__(self,
downsample_times: int = 5,
num_stacks: int = 2,
stage_channels: Sequence = (256, 256, 384, 384, 384, 512),
stage_blocks: Sequence = (2, 2, 2, 2, 2, 4),
feat_channel: int = 256,
norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
init_cfg: OptMultiConfig = None) -> None:
assert init_cfg is None, 'To prevent abnormal initialization ' \
'behavior, init_cfg is not allowed to be set'
super().__init__(init_cfg)
self.num_stacks = num_stacks
assert self.num_stacks >= 1
assert len(stage_channels) == len(stage_blocks)
assert len(stage_channels) > downsample_times
cur_channel = stage_channels[0]
self.stem = nn.Sequential(
ConvModule(
3, cur_channel // 2, 7, padding=3, stride=2,
norm_cfg=norm_cfg),
ResLayer(
BasicBlock,
cur_channel // 2,
cur_channel,
1,
stride=2,
norm_cfg=norm_cfg))
self.hourglass_modules = nn.ModuleList([
HourglassModule(downsample_times, stage_channels, stage_blocks)
for _ in range(num_stacks)
])
self.inters = ResLayer(
BasicBlock,
cur_channel,
cur_channel,
num_stacks - 1,
norm_cfg=norm_cfg)
self.conv1x1s = nn.ModuleList([
ConvModule(
cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
for _ in range(num_stacks - 1)
])
self.out_convs = nn.ModuleList([
ConvModule(
cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg)
for _ in range(num_stacks)
])
self.remap_convs = nn.ModuleList([
ConvModule(
feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
for _ in range(num_stacks - 1)
])
self.relu = nn.ReLU(inplace=True)
def init_weights(self) -> None:
"""Init module weights."""
# Training Centripetal Model needs to reset parameters for Conv2d
super().init_weights()
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.reset_parameters()
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
"""Forward function."""
inter_feat = self.stem(x)
out_feats = []
for ind in range(self.num_stacks):
single_hourglass = self.hourglass_modules[ind]
out_conv = self.out_convs[ind]
hourglass_feat = single_hourglass(inter_feat)
out_feat = out_conv(hourglass_feat)
out_feats.append(out_feat)
if ind < self.num_stacks - 1:
inter_feat = self.conv1x1s[ind](
inter_feat) + self.remap_convs[ind](
out_feat)
inter_feat = self.inters[ind](self.relu(inter_feat))
return out_feats