Spaces:
Runtime error
Runtime error
custom_imports = dict(imports=['mmseg.datasets', 'mmseg.models'], allow_failed_imports=False) | |
sub_model_train = [ | |
'panoptic_head', | |
'panoptic_fusion_head', | |
'data_preprocessor' | |
] | |
sub_model_optim = { | |
'panoptic_head': {'lr_mult': 1}, | |
'panoptic_fusion_head': {'lr_mult': 1}, | |
} | |
max_epochs = 5000 | |
optimizer = dict( | |
type='AdamW', | |
sub_model=sub_model_optim, | |
lr=0.0005, | |
weight_decay=1e-3 | |
) | |
param_scheduler = [ | |
# warm up learning rate scheduler | |
dict( | |
type='LinearLR', | |
start_factor=1e-4, | |
by_epoch=True, | |
begin=0, | |
end=1, | |
# update by iter | |
convert_to_iter_based=True), | |
# main learning rate scheduler | |
dict( | |
type='CosineAnnealingLR', | |
T_max=max_epochs, | |
by_epoch=True, | |
begin=1, | |
end=max_epochs, | |
), | |
] | |
param_scheduler_callback = dict( | |
type='ParamSchedulerHook' | |
) | |
evaluator_ = dict( | |
type='CocoPLMetric', | |
metric=['bbox', 'segm'], | |
proposal_nums=[1, 10, 100] | |
) | |
evaluator = dict( | |
# train_evaluator=evaluator_, | |
val_evaluator=evaluator_, | |
) | |
image_size = (1024, 1024) | |
data_preprocessor = dict( | |
type='mmdet.DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32, | |
pad_mask=True, | |
mask_pad_value=0, | |
) | |
num_things_classes = 1 | |
num_stuff_classes = 0 | |
num_classes = num_things_classes + num_stuff_classes | |
prompt_shape = (90, 4) | |
model_cfg = dict( | |
type='SegSAMPLer', | |
hyperparameters=dict( | |
optimizer=optimizer, | |
param_scheduler=param_scheduler, | |
evaluator=evaluator, | |
), | |
need_train_names=sub_model_train, | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
type='vit_h', | |
checkpoint='pretrain/sam/sam_vit_h_4b8939.pth', | |
# type='vit_b', | |
# checkpoint='pretrain/sam/sam_vit_b_01ec64.pth', | |
), | |
panoptic_head=dict( | |
type='SAMInstanceHead', | |
num_things_classes=num_things_classes, | |
num_stuff_classes=num_stuff_classes, | |
with_multiscale=True, | |
with_sincos=True, | |
prompt_neck=dict( | |
type='SAMTransformerEDPromptGenNeck', | |
prompt_shape=prompt_shape, | |
in_channels=[1280] * 32, | |
inner_channels=64, | |
selected_channels=range(4, 32, 2), | |
# in_channels=[768] * 8, | |
num_encoders=1, | |
num_decoders=4, | |
out_channels=256 | |
), | |
loss_cls=dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=False, | |
loss_weight=2.0, | |
reduction='mean', | |
class_weight=[1.0] * num_classes + [0.1]), | |
loss_mask=dict( | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='mean', | |
loss_weight=5.0), | |
loss_dice=dict( | |
type='mmdet.DiceLoss', | |
use_sigmoid=True, | |
activate=True, | |
reduction='mean', | |
naive_dice=True, | |
eps=1.0, | |
loss_weight=5.0)), | |
panoptic_fusion_head=dict( | |
type='mmdet.MaskFormerFusionHead', | |
num_things_classes=num_things_classes, | |
num_stuff_classes=num_stuff_classes, | |
loss_panoptic=None, | |
init_cfg=None), | |
train_cfg=dict( | |
num_points=12544, | |
oversample_ratio=3.0, | |
importance_sample_ratio=0.75, | |
assigner=dict( | |
type='mmdet.HungarianAssigner', | |
match_costs=[ | |
dict(type='mmdet.ClassificationCost', weight=2.0), | |
dict( | |
type='mmdet.CrossEntropyLossCost', weight=5.0, use_sigmoid=True), | |
dict(type='mmdet.DiceCost', weight=5.0, pred_act=True, eps=1.0) | |
]), | |
sampler=dict(type='mmdet.MaskPseudoSampler')), | |
test_cfg=dict( | |
panoptic_on=False, | |
# For now, the dataset does not support | |
# evaluating semantic segmentation metric. | |
semantic_on=False, | |
instance_on=True, | |
# max_per_image is for instance segmentation. | |
max_per_image=80, | |
iou_thr=0.8, | |
# In Mask2Former's panoptic postprocessing, | |
# it will filter mask area where score is less than 0.5 . | |
filter_low_score=True), | |
) | |
task_name = 'whu_ins' | |
exp_name = 'E20230603_0' | |
logger = dict( | |
type='WandbLogger', | |
project=task_name, | |
group='sam', | |
name=exp_name | |
) | |
# logger = None | |
callbacks = [ | |
param_scheduler_callback, | |
dict( | |
type='ModelCheckpoint', | |
dirpath=f'results/{task_name}/{exp_name}/checkpoints', | |
save_last=True, | |
mode='max', | |
monitor='valsegm_map_0', | |
save_top_k=2, | |
filename='epoch_{epoch}-map_{valsegm_map_0:.4f}' | |
), | |
dict( | |
type='LearningRateMonitor', | |
logging_interval='step' | |
) | |
] | |
trainer_cfg = dict( | |
compiled_model=False, | |
accelerator="auto", | |
strategy="auto", | |
# strategy="ddp", | |
# strategy='ddp_find_unused_parameters_true', | |
# precision='32', | |
# precision='16-mixed', | |
devices=8, | |
default_root_dir=f'results/{task_name}/{exp_name}', | |
# default_root_dir='results/tmp', | |
max_epochs=max_epochs, | |
logger=logger, | |
callbacks=callbacks, | |
log_every_n_steps=20, | |
check_val_every_n_epoch=5, | |
benchmark=True, | |
# sync_batchnorm=True, | |
# fast_dev_run=True, | |
# limit_train_batches=1, | |
# limit_val_batches=0, | |
# limit_test_batches=None, | |
# limit_predict_batches=None, | |
# overfit_batches=0.0, | |
# val_check_interval=None, | |
# num_sanity_val_steps=0, | |
# enable_checkpointing=None, | |
# enable_progress_bar=None, | |
# enable_model_summary=None, | |
# accumulate_grad_batches=32, | |
# gradient_clip_val=15, | |
# gradient_clip_algorithm='norm', | |
# deterministic=None, | |
# inference_mode: bool=True, | |
use_distributed_sampler=True, | |
# profiler="simple", | |
# detect_anomaly=False, | |
# barebones=False, | |
# plugins=None, | |
# reload_dataloaders_every_n_epochs=0, | |
) | |
backend_args = None | |
train_pipeline = [ | |
dict(type='mmdet.LoadImageFromFile'), | |
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
dict(type='mmdet.Resize', scale=image_size), | |
dict(type='mmdet.RandomFlip', prob=0.5), | |
dict(type='mmdet.PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), | |
dict(type='mmdet.Resize', scale=image_size), | |
# If you don't have a gt annotation, delete the pipeline | |
dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='mmdet.PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_batch_size_per_gpu = 3 | |
train_num_workers = 2 | |
test_batch_size_per_gpu = 3 | |
test_num_workers = 2 | |
persistent_workers = True | |
data_parent = '/mnt/search01/dataset/cky_data/WHU' | |
train_data_prefix = 'train/' | |
val_data_prefix = 'test/' | |
dataset_type = 'WHUInsSegDataset' | |
val_loader = dict( | |
batch_size=test_batch_size_per_gpu, | |
num_workers=test_num_workers, | |
persistent_workers=persistent_workers, | |
pin_memory=True, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_parent, | |
ann_file='annotations/WHU_building_test.json', | |
data_prefix=dict(img_path=val_data_prefix + '/image', seg_path=val_data_prefix + '/label'), | |
test_mode=True, | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
datamodule_cfg = dict( | |
type='PLDataModule', | |
train_loader=dict( | |
batch_size=train_batch_size_per_gpu, | |
num_workers=train_num_workers, | |
persistent_workers=persistent_workers, | |
pin_memory=True, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_parent, | |
ann_file='annotations/WHU_building_train.json', | |
data_prefix=dict(img_path=train_data_prefix + '/image', seg_path=train_data_prefix + '/label'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args) | |
), | |
val_loader=val_loader, | |
# test_loader=val_loader | |
predict_loader=val_loader | |
) |