Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List | |
import mat4py | |
from mmengine import get_file_backend | |
from mmpretrain.registry import DATASETS | |
from .base_dataset import BaseDataset | |
from .categories import DTD_CATEGORIES | |
class DTD(BaseDataset): | |
"""The Describable Texture Dataset (DTD). | |
Support the `Describable Texture Dataset <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_ Dataset. | |
After downloading and decompression, the dataset directory structure is as follows. | |
DTD dataset directory: :: | |
dtd | |
βββ images | |
β βββ banded | |
| | βββbanded_0002.jpg | |
| | βββbanded_0004.jpg | |
| | βββ ... | |
β βββ ... | |
βββ imdb | |
β βββ imdb.mat | |
βββ labels | |
| | βββlabels_joint_anno.txt | |
| | βββtest1.txt | |
| | βββtest2.txt | |
| | βββ ... | |
β βββ ... | |
βββ .... | |
Args: | |
data_root (str): The root directory for Describable Texture dataset. | |
split (str, optional): The dataset split, supports "train", | |
"val", "trainval", and "test". Default to "trainval". | |
Examples: | |
>>> from mmpretrain.datasets import DTD | |
>>> train_dataset = DTD(data_root='data/dtd', split='trainval') | |
>>> train_dataset | |
Dataset DTD | |
Number of samples: 3760 | |
Number of categories: 47 | |
Root of dataset: data/dtd | |
>>> test_dataset = DTD(data_root='data/dtd', split='test') | |
>>> test_dataset | |
Dataset DTD | |
Number of samples: 1880 | |
Number of categories: 47 | |
Root of dataset: data/dtd | |
""" # noqa: E501 | |
METAINFO = {'classes': DTD_CATEGORIES} | |
def __init__(self, data_root: str, split: str = 'trainval', **kwargs): | |
splits = ['train', 'val', 'trainval', 'test'] | |
assert split in splits, \ | |
f"The split must be one of {splits}, but get '{split}'" | |
self.split = split | |
data_prefix = 'images' | |
test_mode = split == 'test' | |
self.backend = get_file_backend(data_root, enable_singleton=True) | |
ann_file = self.backend.join_path('imdb', 'imdb.mat') | |
super(DTD, self).__init__( | |
ann_file=ann_file, | |
data_root=data_root, | |
data_prefix=data_prefix, | |
test_mode=test_mode, | |
**kwargs) | |
def load_data_list(self): | |
"""Load images and ground truth labels.""" | |
data = mat4py.loadmat(self.ann_file)['images'] | |
names = data['name'] | |
labels = data['class'] | |
parts = data['set'] | |
num = len(names) | |
assert num == len(labels) == len(parts), 'get error ann file' | |
if self.split == 'train': | |
target_set = {1} | |
elif self.split == 'val': | |
target_set = {2} | |
elif self.split == 'test': | |
target_set = {3} | |
else: | |
target_set = {1, 2} | |
data_list = [] | |
for i in range(num): | |
if parts[i] in target_set: | |
img_name = names[i] | |
img_path = self.backend.join_path(self.img_prefix, img_name) | |
gt_label = labels[i] - 1 | |
info = dict(img_path=img_path, gt_label=gt_label) | |
data_list.append(info) | |
return data_list | |
def extra_repr(self) -> List[str]: | |
"""The extra repr information of the dataset.""" | |
body = [ | |
f'Root of dataset: \t{self.data_root}', | |
] | |
return body | |