Spaces:
Running
Running
File size: 163,291 Bytes
13c20b1 2c4ef8c 8c74afb 196b595 4cc9c49 b325a26 32962aa 7f40716 4608ef6 e3a5325 4608ef6 e5c0437 cdbd74c f20ffae 134bdb1 d7a29b8 864431b e3a5325 6287464 5fa4476 864431b 0df12c6 a04807a 93e074d e3a5325 5fa4476 ec3f1ab 7c8e5e9 864431b 6287464 955763d f20ffae 864431b 13c20b1 2c4ef8c 13c20b1 2c4ef8c 864431b 2c4ef8c 0aafd85 8a460a9 0aafd85 8a460a9 2c4ef8c 13c20b1 2c4ef8c 0aafd85 2c4ef8c 8703cf4 8a460a9 8703cf4 2c4ef8c e9e3195 0aafd85 8a460a9 0aafd85 e9e3195 0aafd85 e9e3195 8a460a9 2c4ef8c 4cc9c49 8a460a9 4cc9c49 ac8d93f e5579ec 42fd0f6 2931540 42fd0f6 9c949f0 b325a26 8a460a9 9c949f0 fb38229 c7cc4f2 b910e0e 8a460a9 9c949f0 b325a26 13c20b1 5fa4476 a6c90d7 e3a5325 4608ef6 b325a26 32962aa 864431b 24185ae f20ffae 24185ae f20ffae 4608ef6 24185ae f20ffae 24185ae f20ffae 4608ef6 f20ffae 24185ae f20ffae 454d167 e3a5325 5fa4476 e5c0437 5fa4476 ac8d93f eec7d18 5fa4476 eec7d18 ac8d93f 5fa4476 e5c0437 ac8d93f 5fa4476 cdbd74c ac8d93f 5fa4476 e5c0437 5fa4476 ac8d93f 5fa4476 ac8d93f e5c0437 ac8d93f e5c0437 ac8d93f 8a460a9 ac8d93f 7f40716 4608ef6 f20ffae 4608ef6 cdbd74c 4608ef6 a8211e6 4608ef6 a8211e6 4608ef6 7f40716 e5c0437 134bdb1 e5c0437 134bdb1 e5c0437 e3a5325 e5c0437 134bdb1 e5c0437 134bdb1 e5c0437 134bdb1 e5c0437 e3a5325 e5c0437 134bdb1 e5c0437 134bdb1 e5c0437 e3a5325 e5c0437 134bdb1 e3a5325 134bdb1 cdbd74c 134bdb1 e5c0437 cdbd74c a6c90d7 cdbd74c 134bdb1 cdbd74c 134bdb1 cdbd74c 134bdb1 f20ffae 134bdb1 f20ffae 134bdb1 e3a5325 134bdb1 e3a5325 134bdb1 f20ffae 7c8e5e9 e5c0437 a6c90d7 134bdb1 f20ffae 864431b 134bdb1 a6c90d7 f20ffae a6c90d7 f20ffae a6c90d7 134bdb1 f20ffae 98cbb56 f20ffae 134bdb1 f20ffae 134bdb1 864431b 134bdb1 7c8e5e9 98cbb56 7c8e5e9 864431b 7c8e5e9 864431b 7c8e5e9 864431b 7c8e5e9 864431b 7c8e5e9 98cbb56 864431b e3a5325 864431b e3a5325 864431b e3a5325 864431b e3a5325 864431b e3a5325 864431b e3a5325 864431b 134bdb1 864431b e3a5325 13c20b1 e3a5325 6287464 e3a5325 955763d e3a5325 6287464 e3a5325 6287464 e3a5325 6287464 e3a5325 6287464 a6c90d7 7f40716 e5c0437 454d167 cdbd74c 7c8e5e9 cdbd74c f20ffae a6c90d7 f20ffae 134bdb1 6287464 a6c90d7 cdbd74c e3a5325 f6ac57c d7a29b8 f6ac57c d7a29b8 f6ac57c d7a29b8 f6ac57c e3a5325 f20ffae d7a29b8 134bdb1 e3a5325 864431b 134bdb1 864431b 134bdb1 864431b 134bdb1 864431b e3a5325 864431b e3a5325 6287464 e3a5325 13c20b1 6287464 e3a5325 6287464 e3a5325 6287464 e3a5325 6287464 e3a5325 6287464 e3a5325 864431b e3a5325 6287464 e3a5325 ba25e9b 864431b 6287464 864431b 6287464 864431b 6287464 864431b 6287464 864431b e3a5325 6287464 e3a5325 6287464 e3a5325 864431b 6287464 e3a5325 864431b e3a5325 6287464 864431b 6287464 864431b 98cbb56 7c8e5e9 e3a5325 6287464 e3a5325 6287464 cdbd74c 134bdb1 a8211e6 a6c90d7 ba25e9b 134bdb1 7c8e5e9 134bdb1 a8211e6 f20ffae a8211e6 f20ffae cdbd74c 134bdb1 7c8e5e9 134bdb1 864431b 134bdb1 864431b 134bdb1 e3a5325 f20ffae 8703cf4 5fa4476 cdbd74c f20ffae a8211e6 cdbd74c a8211e6 cdbd74c 134bdb1 cdbd74c 134bdb1 cdbd74c f20ffae 134bdb1 f6ac57c 6287464 864431b 6287464 864431b 134bdb1 e3a5325 134bdb1 e3a5325 134bdb1 864431b 134bdb1 e3a5325 6287464 e3a5325 134bdb1 6287464 134bdb1 864431b 134bdb1 f6ac57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 |
from googletrans import Translator
from googletrans import LANGUAGES
import spacy
import gradio as gr
import nltk
from nltk.corpus import wordnet
import wikipedia
import re
import time
import random
import os
import zipfile
import ffmpeg
from gtts import gTTS
#from io import BytesIO
from collections import Counter
from PIL import Image, ImageDraw, ImageFont
import io
import numpy as np
from docx import Document
import textwrap
import pandas as pd
import pykakasi
import hangul_romanize
import pinyin
from langdetect import detect
import datetime
import cv2
import math
#from langchain_community.document_loaders import YoutubeLoader #Suggested solution for the deprecated import below
#from langchain.document_loaders import YoutubeLoader #need youtube_transcpt_api and pytube installed
from youtube_transcript_api import YouTubeTranscriptApi
from spacy_syllables import SpacySyllables #https://spacy.io/universe/project/spacy_syllables/
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes #- figure this out after it works
import whisper
import tempfile
#When I forgot about the readme file ChatGPT suggested these - Leaving to remember the Readme.md must be updated as well
#print(gr.__version__)
#import subprocess
#subprocess.run(["pip", "install", "--upgrade", "gradio==3.47.1"]) #For huggingface as they sometimes install specific versions on container build
#Direct and API based spaces
#Make new spaces to to debug inference
#https://huggingface.co/spaces/FM-1976/Starling7B-PlayGround - ctransformers
#https://huggingface.co/spaces/FM-1976/StableLM-Zepyhr-3B_Playground - llamacpp
#https://huggingface.co/spaces/julien-c/zero-gpu-demo/blob/main/app.py - switch the gpu on or off in the interface
#Custom gradio components - https://huggingface.co/freddyaboulton
#Florida map in gradio component - https://huggingface.co/spaces/freddyaboulton/gradio_folium (folium)
#https://huggingface.co/spaces/freddyaboulton/gradio_pdf/blob/main/Dockerfile - PDF component
#https://huggingface.co/spaces/jbilcke-hf/faster-image-server/blob/main/app.py - sdxl-turbo api server idea --> test on lambdalabs with share true
#Uncomment these for Huggingface
nltk.download('maxent_ne_chunker') #Chunker
nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
nltk.download('words') #200 000+ Alphabetical order list
nltk.download('punkt') #Tokenizer
nltk.download('verbnet') #For Description of Verbs
nltk.download('omw')
nltk.download('omw-1.4') #Multilingual Wordnet
nltk.download('wordnet') #For Definitions, Antonyms and Synonyms
nltk.download('shakespeare')
nltk.download('dolch') #Sight words
nltk.download('names') #People Names NER
nltk.download('gazetteers') #Location NER
nltk.download('opinion_lexicon') #Sentiment words
nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
nltk.download('udhr') # Declaration of Human rights in many languages
#spacy.cli.download("en_core_web_sm")
#spacy.cli.download('ko_core_news_sm')
#spacy.cli.download('ja_core_news_sm')
#spacy.cli.download('zh_core_web_sm')
#spacy.cli.download("es_core_news_sm")
#spacy.cli.download("de_core_news_sm")
nlp_en = spacy.load("en_core_web_sm")
nlp_de = spacy.load("de_core_news_sm")
nlp_es = spacy.load("es_core_news_sm")
nlp_ko = spacy.load("ko_core_news_sm")
nlp_ja = spacy.load("ja_core_news_sm")
nlp_zh = spacy.load("zh_core_web_sm")
nlp_en_syllable = spacy.load("en_core_web_sm")
nlp_en_syllable.add_pipe("syllables", after="tagger") #https://spacy.io/universe/project/spacy_syllables/
langdropdown_choices = [f"{code}: {name}" for code, name in LANGUAGES.items()]
nlp = spacy.load('en_core_web_sm')
translator = Translator()
def Sentencechunker(sentence):
Sentchunks = sentence.split(" ")
chunks = []
for i in range(len(Sentchunks)):
chunks.append(" ".join(Sentchunks[:i+1]))
return " | ".join(chunks)
def ReverseSentenceChunker(sentence):
reversed_sentence = " ".join(reversed(sentence.split()))
chunks = Sentencechunker(reversed_sentence)
return chunks
def three_words_chunk(sentence):
words = sentence.split()
chunks = [words[i:i+3] for i in range(len(words)-2)]
chunks = [" ".join(chunk) for chunk in chunks]
return " | ".join(chunks)
def keep_nouns_verbs(sentence):
doc = nlp(sentence)
nouns_verbs = []
for token in doc:
if token.pos_ in ['NOUN','VERB','PUNCT']:
nouns_verbs.append(token.text)
return " ".join(nouns_verbs)
def keep_nouns(sentence):
doc = nlp(sentence)
nouns = []
for token in doc:
if token.pos_ in ['NOUN', 'PUNCT']:
nouns.append(token.text)
if token.text == '.':
nouns.append("\n")
return " ".join(nouns)
def unique_word_count(text="", state=None):
if state is None:
state = {}
words = text.split()
word_counts = state
for word in words:
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
sorted_word_counts = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
return sorted_word_counts,
def Wordchunker(word):
chunks = []
for i in range(len(word)):
chunks.append(word[:i+1])
return chunks
def BatchWordChunk(sentence):
words = sentence.split(" ")
FinalOutput = ""
Currentchunks = ""
ChunksasString = ""
for word in words:
ChunksasString = ""
Currentchunks = Wordchunker(word)
for chunk in Currentchunks:
ChunksasString += chunk + " "
FinalOutput += "\n" + ChunksasString
return FinalOutput
# Translate from English to French
langdest = gr.Dropdown(choices=langdropdown_choices, label="Choose Language", value="de: german") #["af", "de", "es", "ko", "ja", "zh-cn"]
ChunkModeDrop = gr.Dropdown(choices=["Chunks", "Reverse", "Three Word Chunks", "Spelling Chunks"], label="Choose Chunk Type", value="Chunks")
# def FrontRevSentChunk (Chunkmode, Translate, Text, langdest):
# FinalOutput = ""
# TransFinalOutput = ""
# if Chunkmode=="Chunks":
# FinalOutput += Sentencechunker(Text)
# if Chunkmode=="Reverse":
# FinalOutput += ReverseSentenceChunker(Text)
# if Chunkmode=="Three Word Chunks":
# FinalOutput += three_words_chunk(Text)
# if Chunkmode=="Spelling Chunks":
# FinalOutput += BatchWordChunk(Text)
# if Translate:
# TransFinalOutput = FinalOutput
# translated = translator.translate(TransFinalOutput, dest=langdest[:2])
# FinalOutput += "\n" + translated.text
# return FinalOutput
# Define a function to filter out non-verb, noun, or adjective words
def filter_words(words):
# Use NLTK to tag each word with its part of speech
tagged_words = nltk.pos_tag(words)
# Define a set of parts of speech to keep (verbs, nouns, adjectives)
keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'}
# Filter the list to only include words with the desired parts of speech
filtered_words = [word for word, pos in tagged_words if pos in keep_pos]
return filtered_words
def SepHypandSynExpansion(text):
# Tokenize the text
tokens = nltk.word_tokenize(text)
NoHits = ""
FinalOutput = ""
# Find synonyms and hypernyms of each word in the text
for token in tokens:
synonyms = []
hypernyms = []
for synset in wordnet.synsets(token):
synonyms += synset.lemma_names()
hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
if not synonyms and not hypernyms:
NoHits += f"{token} | "
else:
FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n"
NoHits = set(NoHits.split(" | "))
NoHits = filter_words(NoHits)
NoHits = "Words to pay special attention to: \n" + str(NoHits)
return NoHits, FinalOutput
def WikiSearch(term):
termtoks = term.split(" ")
for item in termtoks:
# Search for the term on Wikipedia and get the first result
result = wikipedia.search(item, results=20)
return result
def create_dictionary(word_list, word_dict = {}):
word_list = set(word_list.split(" "))
for word in word_list:
key = word[:2]
if key not in word_dict:
word_dict[key] = [word]
else:
word_dict[key].append(word)
return word_dict
def merge_lines(roman_file, w4w_file, full_mean_file, macaronic_file):
files = [roman_file, w4w_file, full_mean_file, macaronic_file]
merged_lines = []
with open(roman_file.name, "r") as f1, open(w4w_file.name, "r") as f2, \
open(full_mean_file.name, "r") as f3, open(macaronic_file.name, "r") as f4:
for lines in zip(f1, f2, f3, f4):
merged_line = "\n".join(line.strip() for line in lines)
merged_lines.append(merged_line)
return "\n".join(merged_lines)
TTSLangOptions = gr.Dropdown(choices=langdropdown_choices, value="en: english", label="choose the language of the srt/text accent") #["en", "de", "es", "ja", "ko", "zh-cn"]
TTSLangOptions2 = gr.Dropdown(choices=langdropdown_choices, value="en: english", label="choose the language of the srt/text accent")
def TTSforListeningPractice(text, language = "en", Repeat10x = False):
if Repeat10x:
text = text * 10
speech = gTTS(text=text, lang=language[:2], slow="False")
speech.save("CurrentTTSFile.mp3")
#file = BytesIO()
#speech.write_to_fp(file)
#file.seek(0)
return "CurrentTTSFile.mp3" #file
def AutoChorusInvestigator(sentences):
sentences = sentences.splitlines()
# Use Counter to count the number of occurrences of each sentence
sentence_counts = Counter(sentences)
# Identify duplicate sentences
duplicates = [s for s, count in sentence_counts.items() if count > 1]
FinalOutput = ""
if len(duplicates) == 0:
FinalOutput += "No duplicate sentences found in the file."
else:
FinalOutput += "The following sentences appear more than once in the file:"
for sentence in duplicates:
FinalOutput += "\n" + sentence
return FinalOutput
def AutoChorusPerWordScheduler(sentences):
words = set(sentences.split(" "))
wordsoneattime =[]
practicestring = ""
FinalOutput = "This is supposed to output the words in repetition format (i.e. schedule for repitition) \nCurrent Idea = 1 new word every min and 1 old word every second" + "\n\nWords: \n"
for word in words:
wordsoneattime.append(word)
for i in range(0, 59):
practicestring += word + " "
practicestring += random.choice(wordsoneattime) + " "
FinalOutput += word + "\n "
practicestring += "\n"
FinalOutput += practicestring
return FinalOutput
def group_words(inlist):
inlisttoks = inlist.split(" ")
inlistset = set(inlisttoks)
word_groups = []
current_group = []
for word in inlisttoks:
current_group.append(word)
if len(current_group) == 10:
word_groups.append(current_group)
current_group = []
if current_group:
word_groups.append(current_group)
current_group_index = 0
current_group_time = 0
while True:
if current_group_time == 60:
current_group_index = (current_group_index + 1) % len(word_groups)
current_group_time = 0
else:
if current_group_time % 10 == 0:
random.shuffle(word_groups[current_group_index])
current_group_time += 10
yield " ".join(word_groups[current_group_index])
time.sleep(10)
def split_verbs_nouns(text):
nlp = spacy.load("en_core_web_sm")
doc = nlp(text)
verbs_nouns = []
verbs_nouns_str = ""
other_words = []
other_words_str = ""
pos_string = []
for token in doc:
if token.pos_ in ["VERB", "NOUN"]:
verbs_nouns_str += token.text + " || "
other_words_str += "__ "
#verbs_nouns.append(token.text)
#elif token.text in [punct.text for punct in doc if punct.is_punct]:
# verbs_nouns.append(token.text)
# other_words.append(token.text)
else:
other_words_str += token.text + " || "
#other_words.append(token.text)
#pos_string.append(token.pos_)
verbs_nouns_text = verbs_nouns_str #" ".join(verbs_nouns)
other_words_text = other_words_str #" ".join(other_words)
pos_string_text = "Debug Test" #" ".join(pos_string)
return other_words_text, pos_string_text, verbs_nouns_text
SRTLangOptions = gr.Dropdown(choices=["en", "ja", "ko", "zh-cn"], value="en", label="choose the language of the srt") #Left as these four as spacy function
def save_string_to_file(string_to_save, file_name, srtdocx):
with open(file_name, 'w', encoding='utf-8') as file:
file.write(string_to_save)
if srtdocx == "True":
with open(file_name.split('.')[0] + '.srt', 'w', encoding='utf-8') as file:
file.write(string_to_save)
srtdocument = Document()
srtdocument.add_paragraph(string_to_save)
srtdocument.save('SplitSRT.docx')
def split_srt_file(text, lang): #file_path):
# Open the SRT file and read its contents
#with open(file_path, 'r') as f:
# srt_contents = f.read()
if lang == "en": nlp = spacy.load('en_core_web_sm')
if lang == "ja": nlp = spacy.load('ja_core_news_sm')
if lang == "ko": nlp = spacy.load('ko_core_news_sm')
if lang == "zn-cn": nlp = spacy.load('zn_core_web_sm')
srt_contents = text
# Split the SRT file by timestamp
srt_sections = srt_contents.split('\n\n')
srt_sections_POSversion = []
subaswordlist = ""
# Loop through each section of the SRT file
for i in range(len(srt_sections)):
# Split the section into its timestamp and subtitle text
section_lines = srt_sections[i].split('\n')
timestamp = section_lines[1]
subtitle_text = ' | '.join(section_lines[2:])
sub_split_line = nlp(subtitle_text)
subtitle_textPOSversion = ""
subtitle_text = ""
# Replace spaces in the subtitle text with " | "
#subtitle_text = subtitle_text.replace(' ', ' | ')
for token in sub_split_line:
subtitle_text += token.text + " | "
subaswordlist += token.text + " "
subtitle_textPOSversion += token.pos_ + " | "
# Reconstruct the section with the updated subtitle text
srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}"
srt_sections_POSversion.append(f"{section_lines[0]}\n{timestamp}\n{subtitle_textPOSversion[3:]}\n\n")
SplitSRT = '\n\n'.join(srt_sections)
SplitPOSsrt = ''.join(srt_sections_POSversion)
save_string_to_file(SplitSRT, "SplitSRT.txt", "True")
save_string_to_file(SplitPOSsrt, "SplitPOSsrt.txt", "False")
subaswordlist = set(subaswordlist.split(" "))
subaswordlistOutput = ""
for word in subaswordlist:
subaswordlistOutput += "\n | " + word
subaswordlistOutput = str(len(subaswordlist)) + "\n" + subaswordlistOutput
# Join the SRT sections back together into a single string
return subaswordlistOutput, ["SplitSRT.docx", "SplitSRT.txt", "SplitSRT.srt", "SplitPOSsrt.txt"], SplitSRT, SplitPOSsrt
def find_string_positions(s, string):
positions = []
start = 0
while True:
position = s.find(string, start)
if position == -1:
break
positions.append(position)
start = position + len(string)
return positions
def splittext(string):
string_no_formaterror = string.replace(" -- > ", " --> ")
split_positions = find_string_positions(string_no_formaterror, " --> ")
split_strings = []
prepos = 0
for pos in split_positions:
pos -= 12
split_strings.append((string[prepos:pos])) #, string[pos:]))
prepos = pos
FinalOutput = ""
stoutput = ""
linenumber = 1
#print(linenumber)
for item in split_strings[1:]:
stoutput = item[0:29] + "\n" + item[30:]
stspaces = find_string_positions(stoutput, " ")
FinalOutput += str(linenumber) + "\n" + stoutput[:stspaces[-2]] + "\n"
FinalOutput += "\n"
linenumber += 1
return FinalOutput[2:]
def VideotoSegment(video_file, subtitle_file):
# Read the subtitle file and extract the timings for each subtitle
timings = []
for line in subtitle_file:
if '-->' in line:
start, end = line.split('-->')
start_time = start.strip().replace(',', '.')
end_time = end.strip().replace(',', '.')
timings.append((start_time, end_time))
# Cut the video into segments based on the subtitle timings
video_segments = []
for i, (start_time, end_time) in enumerate(timings):
output_file = f'segment_{i}.mp4'
ffmpeg.input(video_file, ss=start_time, to=end_time).output(output_file, codec='copy').run()
video_segments.append(output_file)
# Convert each segment to an MP3 audio file using FFmpeg
audio_segments = []
for i in range(len(timings)):
output_file = f'segment_{i}.mp3'
ffmpeg.input(video_segments[i]).output(output_file, codec='libmp3lame', qscale='4').run()
audio_segments.append(output_file)
# Create a ZIP archive containing all of the segmented files
zip_file = zipfile.ZipFile('segmented_files.zip', 'w')
for segment in video_segments + audio_segments:
zip_file.write(segment)
os.remove(segment)
zip_file.close()
# Return the ZIP archive for download
return 'segmented_files.zip'
def text_to_dropdown(text, id=None): #TextCompFormat
lines = text.strip().split("\n")
html = "<select"
if id:
html += f' id="{id}"'
html += "> \n"
for line in lines:
html += f" <option>{line}</option>\n"
html += "</select> \n"
return html
def text_to_links(text): #TextCompFormat
lines = text.strip().split("\n")
html = ""
for line in lines:
if line.startswith("http"):
html += f"<a href='{line}'> -- -- </a> | "
else:
html += line + "Not a link <br> \n"
return html
HTMLCompMode = gr.Dropdown(choices=["Dropdown", "Links"], value="Links")
def TextCompFormat(text, HTMLCompMode):
FinalOutput = ""
if HTMLCompMode == "Dropdown":
FinalOutput = text_to_dropdown(text)
if HTMLCompMode == "Links":
FinalOutput = text_to_links(text)
return FinalOutput
def create_collapsiblebutton(button_id, button_caption, div_content):
button_html = f'<button id="{button_id}" class="accordionbtn">{button_caption}</button>'
div_html = f'<div id="{button_id}Div" class="panel">\n{div_content}\n </div>'
return button_html + "\n " + div_html
#---------------
def removeTonalMarks(string):
tonalMarks = "āēīōūǖáéíóúǘǎěǐǒǔǚàèìòùǜɔɛ"
nonTonalMarks = "aeiouuaeiouuaeiouuaeiouoe"
noTonalMarksStr = ""
for char in string:
index = tonalMarks.find(char)
if index != -1:
noTonalMarksStr += nonTonalMarks[index]
else:
noTonalMarksStr += char
return noTonalMarksStr
def add_text_to_image(input_image, text, output_image_path="output.png", border_size=2):
text = removeTonalMarks(text)
imagearr = np.asarray(input_image) #Image.open(input_image_path)
width, height = imagearr.shape[:2] #width, height = image.size
img = Image.fromarray(imagearr)
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("ShortBaby.ttf", 36) #ShortBaby-Mg2w.ttf
text_width, text_height = draw.textbbox((0, 0), text, font=font)[2:] #draw.textsize(text, font)
# calculate the x, y coordinates of the text box
x = (width - text_width) / 2
y = (height - text_height) / 2
# put the text on the image with a border
for dx, dy in [(0, 0), (border_size, border_size), (-border_size, -border_size), (border_size, -border_size), (-border_size, border_size)]:
draw.text((x + dx, y + dy), text, font=font, fill=(255, 255, 255))
draw.text((x, y), text, font=font, fill=(0, 0, 0))
img.save(output_image_path, "PNG")
return "output.png"
def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
#Buttons and labels autocreation
#Change this to spacy version so that data is from one library
#Javascript videos on youtube - KodeBase - Change button color Onclick; bro code - button in 5 minutes
#GPT3 helped guide the highlighting if statements
FinalOutput = ""
#sentence = "One Piece chapter 1049 spoilers Thanks to Etenboby from WG forums Chapter 1049: **\"The world we should aspire to\"** * In the cover, someone burned Niji and Yonji\u2019s book * Kaido flashback time. We see his childhood in Vodka Kingdom, and where a few years later he met Whitebeard who told him that Rocks wants to meet him * In the present, part of Raizo\u2019s water leaves the castle and flame clouds disappear. But Momo makes a new one. * Luffy says he will create a world where none of his friends would starve, then he hits Kaido and Kaido falls to the ground of the flower capital. * In another flashback, Kaido tells King that Joy Boy will be the man that can defeat him. **Additional info** *Flashback to Kaidou as a kid* *- His country tries to sell him to the marines but he escapes* *- He rampages in Hachinosu(i think it's blackbeard's island) and Rocks invites him to his crew* *- Young WB appears* *- Rocks flashback suddenly ends* *- Higurashi invites Kaidou* *- The flashback ends with Kaidou telling King he knows who Joy Boy is.* *Back to the present* \\- *Denjirou hugs Hiyori* \\- *Luffy's punch hits Kaidou* *Flashback continues* \\- *King asks: Who is it then?* \\- *Kaidou: The one who will defeat me* \\- *King: Then he will not appear* \\- *Onigashima falls near the capital* \\- *Momo falls* **BREAK NEXT WEEK** https://www.reddit.com/r/OnePiece/comments/umu2h0/one_piece_chapter_1049_spoilers/" #@param {type: "string"}
HTMLMainbody = ""
GradHTMLMainbody = "" #HTML in gradio components doesnt do css and js properly so nned to highlight
doc = nlp(text)
iIDNumber = 0
iVerbCount = 0
iNounCount = 0
iWords = 0
allverbs = ""
allverbslist = ""
allverbids = ""
allverbidslist = ""
for token in doc:
if (token.pos_ == "VERB") or (token.pos_ == "AUX"):
HTMLMainbody = HTMLMainbody + "<button id='btn" + str(iVerbCount) + "' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
GradHTMLMainbody = GradHTMLMainbody + "<button id='btn" + str(iVerbCount) + "' style='background-color: green;' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
allverbids = allverbids + str(iVerbCount) + " "
iVerbCount += 1
iWords += 1
allverbs = allverbs + token.text + " "
elif token.pos_ == "NOUN":
HTMLMainbody = HTMLMainbody + "<label class='Nouns' id='lbl" + token.text + "'>" + token.text + " </label> "
GradHTMLMainbody = GradHTMLMainbody + "<label class='Nouns' id='lbl" + token.text + "' style='background-color: blue;'>" + token.text + " </label> "
iNounCount += 1
iWords += 1
elif token.pos_ == "PUNCT":
HTMLMainbody = HTMLMainbody + token.text
GradHTMLMainbody = GradHTMLMainbody + token.text
else:
HTMLMainbody = HTMLMainbody + token.text + " "
GradHTMLMainbody = GradHTMLMainbody + token.text + " "
iWords += 1
iIDNumber += 1
allverbslist = allverbs.split()
allverbidslist = allverbids.split()
FinalHTML = ""
FinalGradHTML = ""
FinalCSS = ""
FinalJS = ""
FinalCSS = FinalCSS + ''' <style>
body {
background-color: darksalmon;
}
.Nouns {
color: red;
}
.clunknown{
background-color: gainsboro;
}
.clknownl1{
background-color: yellow;
}
.clknownl2{
background-color: gold;
}
.clknownl3{
background-color: orange;
}
.PD1 {
text-align: center;
font-size: larger;
font-family: cursive;
}
.PD2 {
font-family: monospace;
}
</style>
'''
#style='background-color:Gainsboro; There is no general style attribute for buttons but you can make a class and put the style conditions
iSents = 0
for sent in doc.sents:
iSents += 1
FinalHTML += f"<html>\n <head>\n { FinalCSS } \n</head>\n <body>\n <div id='PD1'> \n Picture on mouse hover = Visual<br> Speed = End Goal ==> App Timer Functions ||| \n Sentences: " + str(iSents) + " | Words: " + str(iWords) + " | App elements: " + str(iNounCount + iVerbCount) + " | Verbs: " + str(iVerbCount) + "</div>"
FinalHTML += "\n<div><hr><progress id='myVerbProgress' value='0' max='" + str(iVerbCount) + "'></progress></div>"
FinalJS = FinalJS + '''\n
<script>
function HighlightWord(Button){
if (document.getElementById(Button).style.backgroundColor === 'orange') {
document.getElementById(Button).style.backgroundColor=''
}
else if (document.getElementById(Button).style.backgroundColor === 'gold') {
document.getElementById(Button).style.backgroundColor='orange'
}
else if (document.getElementById(Button).style.backgroundColor === 'yellow') {
document.getElementById(Button).style.backgroundColor='gold'
}
else {document.getElementById(Button).style.backgroundColor='yellow'
}
OnlyUnknownVerbs()
}
'''
FinalGradHTML = FinalHTML + "\n<div><hr>\n" + GradHTMLMainbody + "\n" #HTML in gradio components doesnt do css and js properly so nned to highlight
FinalHTML = FinalHTML + "\n<div><hr>\n" + HTMLMainbody + "\n"
#FinalHTML = FinalHTML + '''</div><hr>
#<button onclick=OnlyUnknownSentences() id="btnOnlyUnknownSentences">Only Unknown Sentences Put this function in a timer to keep up to date without input</button>
#'''
FinalJS = FinalJS + '''
function OnlyUnknownVerbs(){
AllButtons = ''' + str(allverbidslist) + '''
AllButtonsText = ''' + str(allverbslist) + '''
UnknownOutput = ""
iUnknownCount = 0
AllButtons.forEach(function(item){
if (document.getElementById('btn'+item).style.backgroundColor === ''){
UnknownOutput += AllButtonsText[item] + " "
iUnknownCount += 1
}
document.getElementById('myVerbProgress').value = ''' + str(iVerbCount) + ''' - iUnknownCount
})
document.getElementById('PD2').textContent = 'Only Unknwon words list: ' + UnknownOutput
}
</script>
</body>
</html>
'''
FinalHTML = FinalHTML + '''<br><hr><br>
<div id='PD2'> Only Unknown List</div>
\n
'''
FinalGradHTML = FinalGradHTML + '''<br><hr><br>
<div id='PD2'> Only Unknown List</div>
\n
'''
FinalOutput = FinalHTML + FinalJS #FinalCSS + FinalJS
FinalGradOutput = FinalGradHTML + FinalCSS + FinalJS
HTMLDownloadTemp = f'UnknownVerbTrack.html'
with open(HTMLDownloadTemp, 'w') as f:
f.write(FinalOutput)
return HTMLDownloadTemp, FinalGradOutput, FinalOutput
#Kathryn Lingel - Pyambic Pentameter Example - PyCon US
#Basic Language Model Code
def build_model(source_text):
list_of_words = source_text.split()
model = {} #initialise model to empty dictionary
for i, word in enumerate(list_of_words[:-1]): #every word except last word
if not word in model: #If word not already in dictionary as a key we add it and initialise to empty array
model[word] = []
next_word = list_of_words[i+1]
model[word].append(next_word) #model = dictionary per word containing previously seen next words from ANY given text ==> even lyrics
translatestring = str(model)
translatestring = translatestring.replace("'", "")
return model, translatestring
def markov_generate(source_text, num_words = 20):
model = build_model(source_text)
seed = random.choice(list(model.keys())) #Randomly pick a word ==> Heading of the dictionary are keys aka the words
output = [seed] #output initialisation using random word
for i in range(num_words):
last_word = output[-1] #of the output list
next_word = random.choice(model[last_word]) # next word to the above word
output.append(next_word) #new last word in the output list
if next_word not in model:
break
return ' '.join(output) #New list into a string aka (hopefully) sentence
# print(markov_generate("I am the egg man they are the egg men I am the wallrus goo goo g' joob"))
def chunk_srt_text(srt_text, chunk_size):
# Split the SRT text into chunks of the specified size
ChunkList = textwrap.wrap(srt_text, chunk_size)
dfFinalOutput = pd.DataFrame(ChunkList, columns = [f"Chunks - { len(ChunkList) }"])
return dfFinalOutput, ""
#-------------------------------------------------------------------------------------------------------------------------------
#Clean Merge
def split_into_fours(text):
lines = text.split('\n')
chunks = [lines[i:i+4] for i in range(0, len(lines), 4)]
return chunks
def NumberLineSort(listlen):
numbers = list(range(0, listlen)) # create a list of numbers 1 to 12
grouped_numbers = []
for i in range(4):
group = [numbers[j] for j in range(i, len(numbers), 4)]
grouped_numbers.append(group)
return grouped_numbers
def SRTLineSort(text):
chunks = split_into_fours(text)
NumberofBlocks = len(chunks) / 4
printnumber = NumberLineSort(len(chunks))
SRTLinenumber = []
SRTTiming = []
SRTContent = []
FinalOutput = ""
for i in range(0, 3):
for item in printnumber[i]:
if i == 0: SRTLinenumber.append(chunks[item][0])
if i == 1: SRTTiming.append(chunks[item][0])
if i == 2: SRTContent.append(chunks[item])
for i in range(0, int(NumberofBlocks)):
FinalOutput += SRTLinenumber[i] + "\n"
FinalOutput += SRTTiming[i] + "\n"
for i2 in range(0, 4):
FinalOutput += SRTContent[i][i2] + "\n"
FinalOutput += "\n"
return FinalOutput
#--------------------------------------------------------------------------------------------------------------------------------
RandomiseTextType = gr.Dropdown(choices=["Words", "Words5x", "Sentences", "Paragraph", "Page"], value="Words")
def RandomiseTextbyType(Text, Choice):
FinalOutput = ""
TempWords = []
if Choice == "Words" :
TempWords = Text.split()
FinalOutput = reading_randomize_words(TempWords)
if Choice == "Words5x" :
TempWords = Text.split()
FinalOutput = reading_randomize_words5x(TempWords)
if Choice == "Sentences" : FinalOutput = reading_randomize_words_in_sentence(Text)
if Choice == "Paragraph" : FinalOutput = reading_randomize_words_in_paragraph(Text)
if Choice == "Page" : FinalOutput = "Still under Construction"
return FinalOutput
def reading_randomize_words5x(word):
wordScram = ""
for item in word:
for i in range(5):
item = ''.join(random.sample(item, len(item)))
wordScram += " " + item
#print(item)
wordScram += "\n"
return wordScram
def reading_randomize_words(word):
wordScram = ""
for item in word:
item = ''.join(random.sample(item, len(item)))
wordScram += item + " "
return wordScram
def reading_randomize_words_in_sentence(text):
FinalOutput = ""
sentences = text.split(".")
for sentence in sentences:
words = sentence.split()
random.shuffle(words)
FinalOutput += ' '.join(words) + ". "
return FinalOutput
def reading_randomize_words_in_paragraph(paragraph):
sentences = paragraph.split(".")
random.shuffle(sentences)
return '. '.join(sentences)
def changeexposuretext(text):
return f"<marquee> {text} </marquee>"
#-------------------------------------------------------------------------------------------------------------------------------
def ImageTranslationTest(video, subtitle):
#Inputs from file Returns a <tempfile._TemporaryFileWrapper object at ___> so the path is item.name
if subtitle is None:
return video.name
return [video.name, subtitle.name]
#------------------------------------------------------------------------------------------------------------------------------
def AutoSyllablePractice(String):
FinalOutput = ""
stringlen = len(String)
vowels =["a", "e", "i", "o", "y"]
VowelSyllables = []
allvowels = ""
for i in vowels:
if i in String:
allvowels = allvowels + " " + String.replace(i, i + " ")
allvowels = allvowels + " " + String.replace(i, " " + i)
VowelSyllables = allvowels.split(" ")
VowelSyllablesstr = ""
for item in VowelSyllables:
VowelSyllablesstr += item + ", "
FinalOutput += VowelSyllablesstr
return FinalOutput
def GuidedReading(textspreprocess,seperator):
FinalOutput = ""
if seperator == "Sentences":
textspreprocess = textspreprocess.split(".")
FinalOutput = ""
elif seperator == "lines":
textspreprocess = textspreprocess.splitlines()
else: textspreprocess = textspreprocess.split(seperator)
# Load language-specific models
nlp_en = spacy.load("en_core_web_sm")
nlp_de = spacy.load("de_core_news_sm")
nlp_es = spacy.load("es_core_news_sm")
nlp_ko = spacy.load("ko_core_news_sm")
nlp_ja = spacy.load("ja_core_news_sm")
nlp_zh = spacy.load("zh_core_web_sm")
# Create a dictionary of language codes and models
nlp_dict = {"en": nlp_en, "de": nlp_de, "es": nlp_es, "ko": nlp_ko, "ja": nlp_ja, "zh-cn": nlp_zh}
# Define a function to POS tag and transliterate a text given its language code
def pos_tag_and_transliterate(text, lang):
# Get the model for the language
nlp = nlp_dict.get(lang)
if nlp is None:
return None # No model found for the language
# Process the text and get a list of (token, tag) tuples
doc = nlp(text)
original_pos_tags = [(token.text, token.pos_) for token in doc]
# Use different libraries for different languages
if lang == "ja":
# Use pykakasi for Japanese
from pykakasi import kakasi
# Set the modes using properties
k = kakasi()
k.hira2a = True # Hiragana to ascii
k.kata2a = True # Katakana to ascii
k.kanji2a = True # Kanji to ascii
k.roman = "Hepburn" # Use Hepburn romanization
#words = re.findall(r"\S+|\s+", text)
words = [token.text for token in doc]
# Create a dictionary that maps each original word to its transliterated form with spaces
translit_dict = {word: k.convert(word)[0]['hepburn'] for word in words}
# Get the transliterated text with spaces
transliterated = " ".join(translit_dict.values())
# Replace the words in the original POS tag list with their transliterated forms
translit_pos_tags = [(translit_dict.get(word, word), tag) for word, tag in original_pos_tags]
# Get the transliterated language code
lang_translit = lang + "-translit"
elif lang == "ko":
# Use hangul-romanize for Korean
from hangul_romanize import Transliter
from hangul_romanize.rule import academic
transliter = Transliter(academic)
# Create a dictionary that maps each original word to its transliterated form with spaces
words = [token.text for token in doc]
translit_dict = {word: " ".join(transliter.translit(word)) for word in words}
# Get the transliterated text with spaces
transliterated = " ".join(translit_dict.values())
# Replace the words in the original POS tag list with their transliterated forms
translit_pos_tags = [(translit_dict.get(word, word), tag) for word, tag in original_pos_tags]
# Get the transliterated language code
lang_translit = lang + "-translit"
elif lang == "zh-cn":
# Use pinyin for Chinese
from pinyin import get
# Get the transliterated text without spaces
transliterated = get(text)
# Replace the words in the original POS tag list with their transliterated forms
translit_pos_tags = [(get(word), tag) for word, tag in original_pos_tags]
# Get the transliterated language code
lang_translit = lang + "-translit"
else:
# No transliteration needed for other languages
return (text, original_pos_tags, text, original_pos_tags, lang)
# Return a tuple of the original text, the original POS tags, the transliterated text, the transliterated POS tags, and the transliterated language code
return (text, original_pos_tags, transliterated, translit_pos_tags, lang_translit)
# Create an empty list to store the results
texts = []
# Loop through each text in the list
for text in textspreprocess:
# Detect the language of the text
lang = detect(text)
# Add the text and the language as a tuple to the results list
texts.append((text, lang))
# Process each text in the texts list and print the results
for text, lang in texts:
result = pos_tag_and_transliterate(text, lang)
if result is not None:
FinalOutput += f"\nLanguage: {lang}"
FinalOutput += f"\nText: {result[0]}"
if lang in ["ja", "ko", "zh-cn"]:
FinalOutput += f"\nTransliterated Text: {result[2]}"
FinalOutput += f"\n POS tags: {result[1]}"
if lang in ["ja", "ko", "zh-cn"]:
FinalOutput += f"\nTPOS tags: {result[3]}"
FinalOutput += f"\n"
return FinalOutput
def create_acronym_map(text):
"""Create an acronym map from the provided text."""
lines = text.split('\n')
acronym_map = {}
allacronyms = ""
for line in lines:
# Remove any special characters and split by whitespace
words = line.split()
acronym = ''.join([word[0].upper() for word in words if word])
if acronym: # Avoid adding empty lines
acronym_map[line] = acronym
allacronyms += acronym + " | "
return acronym_map, allacronyms
def onlyplurals(Inputtext): #NLP or Simple Suffix check
doc = nlp(Inputtext)
Pluralwords = ""
for token in doc:
if token.tag_ == "NNS" or token.tag_ == "NNPS":
Pluralwords = Pluralwords + token.text + " "
TextToks = Pluralwords.split(' ')
PluralCounts = Counter(elem for elem in TextToks)
return Pluralwords, PluralCounts
def LoadNLTKUDHRText(text):
NLTKtext = nltk.corpus.udhr.raw(text)
CountNLTKText = Counter(NLTKtext.split()).most_common(100)
return CountNLTKText, NLTKtext
NLTKudhr = gr.Dropdown(choices=['English-Latin1', 'Akuapem_Twi-UTF8', 'Zulu-Latin1', 'Afrikaans-Latin1', 'German_Deutsch-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Spanish-Latin1', 'Korean_Hankuko-UTF8', 'Chinese_Mandarin-GB2312', 'Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1', 'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1', 'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', 'Amarakaeri-Latin1', 'Amuesha-Yanesha-UTF8', 'Arabela-Latin1', 'Arabic_Alarabia-Arabic', 'Asante-UTF8', 'Ashaninca-Latin1', 'Asheninca-Latin1', 'Asturian_Bable-Latin1', 'Aymara-Latin1', 'Balinese-Latin1', 'Bambara-UTF8', 'Baoule-UTF8', 'Basque_Euskara-Latin1', 'Batonu_Bariba-UTF8', 'Belorus_Belaruski-Cyrillic', 'Belorus_Belaruski-UTF8', 'Bemba-Latin1', 'Bengali-UTF8', 'Beti-UTF8', 'Bichelamar-Latin1', 'Bikol_Bicolano-Latin1', 'Bora-Latin1', 'Bosnian_Bosanski-Cyrillic', 'Bosnian_Bosanski-Latin2', 'Bosnian_Bosanski-UTF8', 'Breton-Latin1', 'Bugisnese-Latin1', 'Bulgarian_Balgarski-Cyrillic', 'Bulgarian_Balgarski-UTF8', 'Cakchiquel-Latin1', 'Campa_Pajonalino-Latin1', 'Candoshi-Shapra-Latin1', 'Caquinte-Latin1', 'Cashibo-Cacataibo-Latin1', 'Cashinahua-Latin1', 'Catalan-Latin1', 'Catalan_Catala-Latin1', 'Cebuano-Latin1', 'Chamorro-Latin1', 'Chayahuita-Latin1', 'Chechewa_Nyanja-Latin1', 'Chickasaw-Latin1', 'Chinanteco-Ajitlan-Latin1', 'Chinanteco-UTF8', 'Chinese_Mandarin-GB2312', 'Chuuk_Trukese-Latin1', 'Cokwe-Latin1', 'Corsican-Latin1', 'Croatian_Hrvatski-Latin2', 'Czech-Latin2', 'Czech-UTF8', 'Czech_Cesky-Latin2', 'Czech_Cesky-UTF8', 'Dagaare-UTF8', 'Dagbani-UTF8', 'Dangme-UTF8', 'Danish_Dansk-Latin1', 'Dendi-UTF8', 'Ditammari-UTF8', 'Dutch_Nederlands-Latin1', 'Edo-Latin1', 'English-Latin1', 'Esperanto-UTF8', 'Estonian_Eesti-Latin1', 'Ewe_Eve-UTF8', 'Fante-UTF8', 'Faroese-Latin1', 'Farsi_Persian-UTF8', 'Farsi_Persian-v2-UTF8', 'Fijian-Latin1', 'Filipino_Tagalog-Latin1', 'Finnish_Suomi-Latin1', 'Fon-UTF8', 'French_Francais-Latin1', 'Frisian-Latin1', 'Friulian_Friulano-Latin1', 'Ga-UTF8', 'Gagauz_Gagauzi-UTF8', 'Galician_Galego-Latin1', 'Garifuna_Garifuna-Latin1', 'German_Deutsch-Latin1', 'Gonja-UTF8', 'Greek_Ellinika-Greek', 'Greek_Ellinika-UTF8', 'Greenlandic_Inuktikut-Latin1', 'Guarani-Latin1', 'Guen_Mina-UTF8', 'HaitianCreole_Kreyol-Latin1', 'HaitianCreole_Popular-Latin1', 'Hani-Latin1', 'Hausa_Haoussa-Latin1', 'Hawaiian-UTF8', 'Hebrew_Ivrit-Hebrew', 'Hebrew_Ivrit-UTF8', 'Hiligaynon-Latin1', 'Hindi-UTF8', 'Hindi_web-UTF8', 'Hmong_Miao-Sichuan-Guizhou-Yunnan-Latin1', 'Hmong_Miao-SouthernEast-Guizhou-Latin1', 'Hmong_Miao_Northern-East-Guizhou-Latin1', 'Hrvatski_Croatian-Latin2', 'Huasteco-Latin1', 'Huitoto_Murui-Latin1', 'Hungarian_Magyar-Latin1', 'Hungarian_Magyar-Latin2', 'Hungarian_Magyar-UTF8', 'Ibibio_Efik-Latin1', 'Icelandic_Yslenska-Latin1', 'Ido-Latin1', 'Igbo-UTF8', 'Iloko_Ilocano-Latin1', 'Indonesian-Latin1', 'Interlingua-Latin1', 'Inuktikut_Greenlandic-Latin1', 'IrishGaelic_Gaeilge-Latin1', 'Italian-Latin1', 'Italian_Italiano-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Javanese-Latin1', 'Jola-Fogny_Diola-UTF8', 'Kabye-UTF8', 'Kannada-UTF8', 'Kaonde-Latin1', 'Kapampangan-Latin1', 'Kasem-UTF8', 'Kazakh-Cyrillic', 'Kazakh-UTF8', 'Kiche_Quiche-Latin1', 'Kicongo-Latin1', 'Kimbundu_Mbundu-Latin1', 'Kinyamwezi_Nyamwezi-Latin1', 'Kinyarwanda-Latin1', 'Kituba-Latin1', 'Korean_Hankuko-UTF8', 'Kpelewo-UTF8', 'Krio-UTF8', 'Kurdish-UTF8', 'Lamnso_Lam-nso-UTF8', 'Latin_Latina-Latin1', 'Latin_Latina-v2-Latin1', 'Latvian-Latin1', 'Limba-UTF8', 'Lingala-Latin1', 'Lithuanian_Lietuviskai-Baltic', 'Lozi-Latin1', 'Luba-Kasai_Tshiluba-Latin1', 'Luganda_Ganda-Latin1', 'Lunda_Chokwe-lunda-Latin1', 'Luvale-Latin1', 'Luxembourgish_Letzebuergeusch-Latin1', 'Macedonian-UTF8', 'Madurese-Latin1', 'Makonde-Latin1', 'Malagasy-Latin1', 'Malay_BahasaMelayu-Latin1', 'Maltese-UTF8', 'Mam-Latin1', 'Maninka-UTF8', 'Maori-Latin1', 'Mapudungun_Mapuzgun-Latin1', 'Mapudungun_Mapuzgun-UTF8', 'Marshallese-Latin1', 'Matses-Latin1', 'Mayan_Yucateco-Latin1', 'Mazahua_Jnatrjo-UTF8', 'Mazateco-Latin1', 'Mende-UTF8', 'Mikmaq_Micmac-Mikmaq-Latin1', 'Minangkabau-Latin1', 'Miskito_Miskito-Latin1', 'Mixteco-Latin1', 'Mongolian_Khalkha-Cyrillic', 'Mongolian_Khalkha-UTF8', 'Moore_More-UTF8', 'Nahuatl-Latin1', 'Ndebele-Latin1', 'Nepali-UTF8', 'Ngangela_Nyemba-Latin1', 'NigerianPidginEnglish-Latin1', 'Nomatsiguenga-Latin1', 'NorthernSotho_Pedi-Sepedi-Latin1', 'Norwegian-Latin1', 'Norwegian_Norsk-Bokmal-Latin1', 'Norwegian_Norsk-Nynorsk-Latin1', 'Nyanja_Chechewa-Latin1', 'Nyanja_Chinyanja-Latin1', 'Nzema-UTF8', 'OccitanAuvergnat-Latin1', 'OccitanLanguedocien-Latin1', 'Oromiffa_AfaanOromo-Latin1', 'Osetin_Ossetian-UTF8', 'Oshiwambo_Ndonga-Latin1', 'Otomi_Nahnu-Latin1', 'Paez-Latin1', 'Palauan-Latin1', 'Peuhl-UTF8', 'Picard-Latin1', 'Pipil-Latin1', 'Polish-Latin2', 'Polish_Polski-Latin2', 'Ponapean-Latin1', 'Portuguese_Portugues-Latin1', 'Pulaar-UTF8', 'Punjabi_Panjabi-UTF8', 'Purhepecha-UTF8', 'Qechi_Kekchi-Latin1', 'Quechua-Latin1', 'Quichua-Latin1', 'Rarotongan_MaoriCookIslands-Latin1', 'Rhaeto-Romance_Rumantsch-Latin1', 'Romani-Latin1', 'Romani-UTF8', 'Romanian-Latin2', 'Romanian_Romana-Latin2', 'Rukonzo_Konjo-Latin1', 'Rundi_Kirundi-Latin1', 'Runyankore-rukiga_Nkore-kiga-Latin1', 'Russian-Cyrillic', 'Russian-UTF8', 'Russian_Russky-Cyrillic', 'Russian_Russky-UTF8', 'Sami_Lappish-UTF8', 'Sammarinese-Latin1', 'Samoan-Latin1', 'Sango_Sangho-Latin1', 'Sanskrit-UTF8', 'Saraiki-UTF8', 'Sardinian-Latin1', 'ScottishGaelic_GaidhligAlbanach-Latin1', 'Seereer-UTF8', 'Serbian_Srpski-Cyrillic', 'Serbian_Srpski-Latin2', 'Serbian_Srpski-UTF8', 'Sharanahua-Latin1', 'Shipibo-Conibo-Latin1', 'Shona-Latin1', 'Sinhala-UTF8', 'Siswati-Latin1', 'Slovak-Latin2', 'Slovak_Slovencina-Latin2', 'Slovenian_Slovenscina-Latin2', 'SolomonsPidgin_Pijin-Latin1', 'Somali-Latin1', 'Soninke_Soninkanxaane-UTF8', 'Sorbian-Latin2', 'SouthernSotho_Sotho-Sesotho-Sutu-Sesutu-Latin1', 'Spanish-Latin1', 'Spanish_Espanol-Latin1', 'Sukuma-Latin1', 'Sundanese-Latin1', 'Sussu_Soussou-Sosso-Soso-Susu-UTF8', 'Swaheli-Latin1', 'Swahili_Kiswahili-Latin1', 'Swedish_Svenska-Latin1', 'Tahitian-UTF8', 'Tenek_Huasteco-Latin1', 'Tetum-Latin1', 'Themne_Temne-UTF8', 'Tiv-Latin1', 'Toba-UTF8', 'Tojol-abal-Latin1', 'TokPisin-Latin1', 'Tonga-Latin1', 'Tongan_Tonga-Latin1', 'Totonaco-Latin1', 'Trukese_Chuuk-Latin1', 'Turkish_Turkce-Turkish', 'Turkish_Turkce-UTF8', 'Tzeltal-Latin1', 'Tzotzil-Latin1', 'Uighur_Uyghur-Latin1', 'Uighur_Uyghur-UTF8', 'Ukrainian-Cyrillic', 'Ukrainian-UTF8', 'Umbundu-Latin1', 'Urarina-Latin1', 'Uzbek-Latin1', 'Vietnamese-ALRN-UTF8', 'Vietnamese-UTF8', 'Vlach-Latin1', 'Walloon_Wallon-Latin1', 'Wama-UTF8', 'Waray-Latin1', 'Wayuu-Latin1', 'Welsh_Cymraeg-Latin1', 'WesternSotho_Tswana-Setswana-Latin1', 'Wolof-Latin1', 'Xhosa-Latin1', 'Yagua-Latin1', 'Yao-Latin1', 'Yapese-Latin1', 'Yoruba-UTF8', 'Zapoteco-Latin1', 'Zapoteco-SanLucasQuiavini-Latin1', 'Zhuang-Latin1', 'Zulu-Latin1'], label="Choose one the below languages", value='English-Latin1')
def SimultaneousSpellingPrac(text):
TextToks = text.split()
FinalOutput = "For Sentences wrap in another function that calls function per sentences (Spacy) \n"
iLongestWord = 0
for tok in TextToks:
if len(tok) > iLongestWord: iLongestWord = len(tok)
Equaltok = ""
for tok in TextToks:
Equaltok = Equaltok + tok.ljust(iLongestWord, '0') + " " #https://stackoverflow.com/questions/23216512/python-make-string-equal-length
SimulList = []
for i in range(0, iLongestWord):
for tok in Equaltok.split():
SimulList.append(tok[i])
iWordSpaces = 0
ZerosFinalOutput = ""
for item in SimulList:
iWordSpaces += 1
ZerosFinalOutput = ZerosFinalOutput + item
if iWordSpaces == len(TextToks):
ZerosFinalOutput = ZerosFinalOutput + " "
iWordSpaces = 0
FinalOutput = FinalOutput + ZerosFinalOutput + " \n\n" + ZerosFinalOutput.replace("0", "") + " \n\n" + str(iLongestWord)
return FinalOutput
def FirstLetterSummary(Text):
TextToks = Text.split(" ")
FinalOutput = ''
for tok in TextToks:
FinalOutput = FinalOutput + tok[0] + " "
WordSuggestLetters = FinalOutput.replace(" ","")
WordSuggestToks = [(WordSuggestLetters[i:i+5]) for i in range(0, len(WordSuggestLetters), 5)]
WordsSuggest = ""
for text in WordSuggestToks:
WordsSuggest = WordsSuggest + " " + text
return FinalOutput, WordsSuggest
#-------
def imagebasedreading(inputtext):
# Read the user input text file
#with open("inputtext.txt", "r", encoding="utf-8") as file:
# inputtext = file.read()
inputtextlines = inputtext.splitlines()
htmlpart1 = """
<!DOCTYPE html>
<html>
<head>
<title>Image Placeholder with Text Background</title>
<style>
.grid-container {
display: grid;
grid-template-columns: repeat(4, 1fr);
gap: 16px;
}
.image-container {
width: 300px;
height: 300px;
margin: 10px;
border: 1px solid black;
}
img {
width: 100%;
height: 100%;
}
</style>
</head>
<body>
<button onclick="saveState()">Save State</button>
<button onclick="saveFilePaths()">Save File Paths</button>
<input type="file" id="loadStateFile" onchange="loadState(event)">
<button onclick="updateCounter()">Update Counter</button>
<label id="counterLabel">0 / """ + str(len(inputtextlines)) + """ images complete</label>
<div class="grid-container">
"""
htmlpart2 = """
</div>
<script>
function clearState() {
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img) => {
img.src = "";
});
}
let filePaths = {};
function loadImage(idx) {
const fileInput = document.getElementById("fileInput" + idx);
const image = document.getElementById("image" + idx);
const file = fileInput.files[0];
const reader = new FileReader();
reader.addEventListener("load", function () {
image.src = reader.result;
filePaths["image" + idx] = file.name;
updateCounter();
}, false);
if (file) {
reader.readAsDataURL(file);
}
}
function saveState() {
let state = {};
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img, idx) => {
if (img.src && img.src !== window.location.href) {
state["image" + idx] = img.src;
}
});
const blob = new Blob([JSON.stringify(state)], { type: 'text/plain' });
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = 'image_state.txt';
a.click();
}
function saveFilePaths() {
const blob = new Blob([JSON.stringify(filePaths)], { type: 'text/plain' });
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = 'file_paths.txt';
a.click();
}
function loadState(event) {
clearState(); // Clear existing state
const file = event.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(e) {
const state = JSON.parse(e.target.result);
for (const [key, value] of Object.entries(state)) {
const image = document.getElementById(key);
if (image) {
image.src = value;
}
}
};
reader.readAsText(file);
}
}
function updateCounter() {
const totalPlaceholders = document.querySelectorAll(".image-container").length;
let loadedImages = 0;
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img) => {
if (img.src && img.src !== window.location.href) {
loadedImages += 1;
}
});
document.getElementById("counterLabel").innerText = loadedImages + " / " + totalPlaceholders + " images complete";
}
</script>
</body>
</html>
"""
#If you have a gpu and imagepipeline then src in img tag = filepath of generate image
def generate_html(textlines):
num_containers = len(textlines)
html_string = ""
for i in range(num_containers):
container = f'''
<div class="image-container">
<input type="file" id="fileInput{i}" onchange="loadImage({i})">
<img id="image{i}" src="" alt="{textlines[i]} - Placeholder {i + 1}" onerror="this.style.background = 'grey url(data:image/svg+xml;utf8,<svg xmlns=\'http://www.w3.org/2000/svg\' viewBox=\'0 0 100 100\'><text y=\'.9em\' font-size=\'90\'>Placeholder {i + 1}</text></svg>) no-repeat center; this.style.border = \'1px solid black\';">
</div>
'''
html_string += container
return html_string
# Generate the HTML based on the number of lines
output_html = htmlpart1 + "\n" + generate_html(inputtextlines) + "\n" + htmlpart2
# Save the generated HTML
now = datetime.datetime.now()
filename = f"ImagePlaceholder{now.strftime('%Y-%m-%d_%H-%M')}_{inputtext[:16]}.html"
with open(filename, "w", encoding="utf-8") as file:
file.write(output_html)
return filename, output_html, output_html
def imagebasedreadingwordlevel(inputtext):
# Read the user input text file
#with open("inputtext.txt", "r", encoding="utf-8") as file:
# inputtext = file.read()
inputtextlines = inputtext.split(" ")
htmlpart1 = """
<!DOCTYPE html>
<html>
<head>
<title>Image Placeholder with Text Background</title>
<style>
.grid-container {
display: grid;
grid-template-columns: repeat(4, 1fr);
gap: 16px;
}
.image-container {
width: 300px;
height: 300px;
margin: 10px;
border: 1px solid black;
}
img {
width: 100%;
height: 100%;
}
</style>
</head>
<body>
<button onclick="saveState()">Save State</button>
<button onclick="saveFilePaths()">Save File Paths</button>
<input type="file" id="loadStateFile" onchange="loadState(event)">
<button onclick="updateCounter()">Update Counter</button>
<label id="counterLabel">0 / """ + str(len(inputtextlines)) + """ images complete</label>
<div class="grid-container">
"""
htmlpart2 = """
</div>
<script>
function clearState() {
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img) => {
img.src = "";
});
}
let filePaths = {};
function loadImage(idx) {
const fileInput = document.getElementById("fileInput" + idx);
const image = document.getElementById("image" + idx);
const file = fileInput.files[0];
const reader = new FileReader();
reader.addEventListener("load", function () {
image.src = reader.result;
filePaths["image" + idx] = file.name;
updateCounter();
}, false);
if (file) {
reader.readAsDataURL(file);
}
}
function saveState() {
let state = {};
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img, idx) => {
if (img.src && img.src !== window.location.href) {
state["image" + idx] = img.src;
}
});
const blob = new Blob([JSON.stringify(state)], { type: 'text/plain' });
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = 'image_state.txt';
a.click();
}
function saveFilePaths() {
const blob = new Blob([JSON.stringify(filePaths)], { type: 'text/plain' });
const a = document.createElement('a');
a.href = URL.createObjectURL(blob);
a.download = 'file_paths.txt';
a.click();
}
function loadState(event) {
clearState(); // Clear existing state
const file = event.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(e) {
const state = JSON.parse(e.target.result);
for (const [key, value] of Object.entries(state)) {
const image = document.getElementById(key);
if (image) {
image.src = value;
}
}
};
reader.readAsText(file);
}
}
function updateCounter() {
const totalPlaceholders = document.querySelectorAll(".image-container").length;
let loadedImages = 0;
const imageContainers = document.querySelectorAll(".image-container img");
imageContainers.forEach((img) => {
if (img.src && img.src !== window.location.href) {
loadedImages += 1;
}
});
document.getElementById("counterLabel").innerText = loadedImages + " / " + totalPlaceholders + " images complete";
}
</script>
</body>
</html>
"""
#If you have a gpu and imagepipeline then src in img tag = filepath of generate image
def generate_html(textlines):
num_containers = len(textlines)
html_string = ""
for i in range(num_containers):
container = f'''
<div class="image-container">
<input type="file" id="fileInput{i}" onchange="loadImage({i})">
<img id="image{i}" src="" alt="{textlines[i]} - Placeholder {i + 1}" onerror="this.style.background = 'grey url(data:image/svg+xml;utf8,<svg xmlns=\'http://www.w3.org/2000/svg\' viewBox=\'0 0 100 100\'><text y=\'.9em\' font-size=\'90\'>Placeholder {i + 1}</text></svg>) no-repeat center; this.style.border = \'1px solid black\';">
</div>
'''
html_string += container
return html_string
# Generate the HTML based on the number of lines
output_html = htmlpart1 + "\n" + generate_html(inputtextlines) + "\n" + htmlpart2
# Save the generated HTML
now = datetime.datetime.now()
filename = f"ImagePlaceholderwordlevel{now.strftime('%Y-%m-%d_%H-%M')}_{inputtext[:16]}.html"
with open(filename, "w", encoding="utf-8") as file:
file.write(output_html)
return filename, output_html, output_html
#--------
guidedreadingseperator = gr.Dropdown(choices=[".", ",", "lines", "Sentences"], value=".", interactive=True)
textspreprocess = [
["Bing created this example \nApple is looking at buying U.K. startup for $1 billion \nApple schaut sich für 1 Milliarde Dollar ein Startup aus Großbritannien an \nApple está mirando comprar una startup del Reino Unido por mil millones de dólares \n애플은 영국의 스타트업을 10억 달러에 사려고 한다 \nアップルは、英国のスタートアップを10億ドルで買収する予定だ \n苹果正考虑以10亿美元收购英国初创公司", "\n"],
["This is an english sentence. This is the second english sentence", "."],
]
LLPromptIdeas = """
Lets try this I will give you the english word and you find the <<chinese>> word and then mix the meaning of the word with the mnemonic
Bings Explanation
Youre welcome. Im happy to help. If I wanted to explain the rules of this game clearly and concisely, I would do something like this:
The game is about finding the <<Chinese>> word for an English word and making a mnemonic that mixes the meaning of the word with the mnemonic.
The game has two players: one who gives the English word and one who finds the <<Chinese>> word and makes the mnemonic.
The player who gives the English word can choose any word they want, as long as it has a <<Chinese>> equivalent.
The player who finds the <<Chinese>> word and makes the mnemonic can use any online or offline resources they want, such as dictionaries, translators, or search engines.
The player who finds the <<Chinese>> word and makes the mnemonic should write their answer in the format: The <<Chinese>> word for X is Y <<(pinyin)>>, which means Z. Here are some possible mnemonics that mix the meaning of the word with the mnemonic: A, B, C, D. </p>
<hr>
Try make sepreate sentences with this acronym as the best wordplay expert in the world - SI(AGM, KPHSIO, ACFJG, DYNAGJ, JBMNNA, HNPDM, BSED, WUENN |
<hr>
Make jokes while following rules for a syllogism jokes game:
The game can be played with any number of people.
One person starts by stating a syllogism, which is a logical argument that consists of three parts: a major premise, a minor premise, and a conclusion.
The next person must then state a syllogism that has the same conclusion as the first syllogism, but with different major and minor premises.
The game continues in this way until someone cannot think of a new syllogism.
The person who makes the last valid syllogism wins the game. </p>
<hr>
Do you know pydot?
Please create code for a class diagragm using the pydot library in python for the following topic/entity
<hr>
(System/First request) Your job is to lengthen Text sent to you in a meaningful way. You must create 20 paragraphs for each Text line sent by the user
(User) Text: I went to the beach
<hr>
replace as many words with emojis in the sentence Life is very sweet <br>
next sentence is AI Town is a virtual town where AI characters live, chat and socialize.
<hr>
<p> </p>
"""
LLPromptIdeasasbtns = LLPromptIdeas.split("<hr>")
def display_website(link):
html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
gr.Info("If 404 then the space/page has probably been disabled - normally due to a better alternative")
return html
def RepititionPracticeTimeCalculator(text, reps_per_item, seconds_per_item):
textlines = text.splitlines()
lines = len(textlines)
FinalOutput = f"Total Time is estimated: { lines * reps_per_item * seconds_per_item / 60 } minutes ( {lines} lines)"
return FinalOutput
randomExposuremessageText = ["Great Test for LLM function calling (with Gradio Client)", "Unknown Tracker Tab = Incomplete Reading Assistant Idea - HTML app based on text to be read", "Bing mnemonic - lost = dont ignore unusual sounds here inside lost cave", "1000 verbs in lists of 100, verbs = easy setence structure estimation (SVO, SOV, etc.)", "Can put any message here in the navigatoin tab"]
def randommarquee():
randomExposuremessagelistitem = ""
randomExposuremessagelistitem = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
#randomExposuremessagelistitem2 = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
return f" <marquee> { randomExposuremessagelistitem } </marquee> "
def TabNavigation():
return gr.Tabs.update(selected=1) #, tabs1=nav1)
def segment_video_with_opencv(file_path, segment_duration=60):
# Open the video file
cap = cv2.VideoCapture(file_path.name)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate total segments required
total_segments = math.ceil(total_frames / (fps * segment_duration))
# List to store the file paths of the generated chunks
generated_files = []
for segment in range(total_segments):
# Define the codec and create VideoWriter object
# For .mp4 output, use the H.264 codec with the tag 'mp4v'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_filename = f'./splitvideo/chunk_{segment}.mp4'
out = cv2.VideoWriter(output_filename, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
for frame_num in range(fps * segment_duration):
ret, frame = cap.read()
if ret:
out.write(frame)
else:
break
out.release()
# Append the file path of the generated chunk to the list
generated_files.append(output_filename)
cap.release()
return generated_files
def fill_lines(input, num_lines=1000):
# Split the input by newline and store it in a list
input_list = input.splitlines()
# Calculate how many lines each part of the input should get
lines_per_part = int(num_lines // len(input_list))
# Initialize an empty list to store the output
output_list = []
currentpart = ""
# Loop through each part of the input
for part in input_list:
currentpart += part + "\n"
# Fill the list of strings into one string with newlines
filled_part = currentpart * lines_per_part #textwrap.fill(wrapped_part, width=lines_per_part)
# Append the filled part to the output list
output_list.append(filled_part)
currentpart = ""
# Join the output list into one string with newlines
output = "\n".join(output_list)
return output
def TestSplitandUpdatebtntest():
gr.Info("Incomplete - Text Chosen for Interface")
pass
def TestSplitandUpdate(Text):
return f" Length of the text - { len(Text) }", gr.Button("Incomplete - Set this Text as default for all interfaces") #.click(TestSplitandUpdatebtntest, inputs=None, outputs=None) - Returns the event instead of the button with the event
TestSplitandUpdateinput = gr.Textbox(placeholder="Counter and Placeholder one point of entry for the text to be analysed across the whole app")
def RepititionInjectedReading(splitby, learning, reading):
readingdoc = nlp(reading)
learninglist = learning.splitlines()
FinalOutput = ""
if splitby == "sentences":
numofsplitsinreading = sum(1 for _ in readingdoc.sents) #len(readingdoc.sents) is wrong because of generator
if splitby == "words":
numofsplitsinreading = sum(1 for _ in readingdoc.sents) #len(readingdoc.tokens) is wrong because of generator
numofsplitsinlearning = len(learninglist)
RepInjectedText = "\n"
for i in range(0, numofsplitsinlearning):
for sent in readingdoc.sents:
RepInjectedText += sent.text + " (" + learninglist[i] + ") "
FinalOutput = f"{ numofsplitsinreading } repitition oppurtunities between the sentences: \n { RepInjectedText }"
return FinalOutput
Repsplitdropdown = gr.Dropdown(choices=["sentences", "words"], value="sentences", label="Split by")
def hidingbuttontesttranslate(text):
html = """
<html>
<head>
<style>
#container {
display: flex;
flex-direction: column;
}
button {
width: 200px;
padding: 12px 20px;
margin: 8px 0;
}
.hidden {
display: none;
}
</style>
</head>
<body>
<div id="container">
"""
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
for i, sentence in enumerate(sentences):
html += f"""
<button id="sentence{i}" class="sentence">
{sentence}
</button>
"""
html += """
</div>
<script>
let activeBtn;
const buttons = document.querySelectorAll('.sentence');
buttons.forEach(button => {
button.addEventListener('click', () => {
buttons.forEach(b => b.classList.add('hidden'))
if (activeBtn) {
activeBtn.classList.remove('hidden');
}
activeBtn = button;
activeBtn.classList.remove('hidden');
});
});
</script>
</body>
</html>
"""
return gr.Code(html, language="html"), gr.HTML(html)
def extract_video_id(youtube_url):
# Regular expression patterns for different YouTube URL formats
regex_patterns = [
r"(?<=v=)[a-zA-Z0-9_-]+", # Pattern for 'https://www.youtube.com/watch?v=VIDEO_ID'
r"(?<=be/)[a-zA-Z0-9_-]+", # Pattern for 'https://youtu.be/VIDEO_ID'
r"(?<=embed/)[a-zA-Z0-9_-]+" # Pattern for 'https://www.youtube.com/embed/VIDEO_ID'
]
video_id = None
for pattern in regex_patterns:
match = re.search(pattern, youtube_url)
if match:
video_id = match.group(0)
break
return video_id
YTTtranscriptSubtitleOutput = []
YTTtrancriptAnalysedSubtitleOutput = []
def YTTransciptAnalysisandLoad(link):
global YTTtranscriptSubtitleOutput, YTTtrancriptAnalysedSubtitleOutput
if re.match(r'https?:\/\/youtu\.be\/', link) is not None:
print("Needs Reformat")
video_id = link.split('/')[3]
link = 'https://www.youtube.com/watch?v={}'.format(video_id)
else: video_id = extract_video_id(link)
#loader = YoutubeLoader.from_youtube_url(f"{ link }", add_video_info=True)
#YTTtranscriptloader = loader.load()
try:
YTTtranscript = YouTubeTranscriptApi.get_transcript(video_id)
#YTTtranscript = YTTtranscriptloader[0]
YTTtranscriptSubtitleOutput = YTTtranscript
except IndexError or AttributeError:
print("No Transcript Found")
YTTtranscript = "No Transcript found"
YTTtrancriptAnalysed = []
YTTTextforTranslation = ""
for subtitle in YTTtranscript:
YTTtrancriptAnalysed.append({'text': keep_nouns(subtitle['text']), 'start': subtitle['start'], 'duration': subtitle['duration']})
YTTTextforTranslation += "\n" + subtitle["text"]
#YTTtrancriptAnalysed = str(len(YTTtranscript.page_content)) + "" + str(YTTtranscript.metadata)
YTTtrancriptAnalysedSubtitleOutput = YTTtrancriptAnalysed
if re.match(r'https?:\/\/(?:www\.)?youtube\.com\/watch', link) is not None:
video_id = re.search(r'v=([^&]+)', link).group(1)
link = 'https://www.youtube.com/embed/{}'.format(video_id)
return f'<iframe width="100%" height="640" src="{ link }" title="" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>', YTTtranscript, YTTtrancriptAnalysed, YTTTextforTranslation
def TimedList(list, duration, splits=0):
if splits == 0:
splits = duration // len(list)
for item in list:
yield item
time.sleep(splits)
def synctextboxes(text):
return text
def subtitle_generator():
global YTTtranscriptSubtitleOutput, YTTtrancriptAnalysedSubtitleOutput
"""
A generator that yields the subtitle based on the current playback time.
:param subtitles: List of subtitles, where each subtitle is a dictionary with 'start', 'duration', and 'text' keys.
:param playback_start_time: The time when playback started, used to calculate the current playback time.
"""
if YTTtranscriptSubtitleOutput == "":
return ("No subtitle", "No subtitle", "No subtitle")
playback_start_time = time.time()
while True:
current_time = time.time() - playback_start_time
for index, subtitle in enumerate(YTTtranscriptSubtitleOutput):
start_time = int(subtitle['start'])
end_time = start_time + int(subtitle['duration'])
if start_time <= current_time < end_time:
yield (YTTtrancriptAnalysedSubtitleOutput[index]['text'], subtitle['text'], subtitle['start'])
break
else:
yield ("", "", "")
time.sleep(1) # Wait for 1 second before updating
def word_to_k8s_format(word):
if len(word) <= 2:
return word
else:
return word[0] + str(len(word) - 2) + word[-1]
def ForeignSyllableListenFormat(text):
FinalOutput = ""
words = nlp_en_syllable(text)
FirstSyllablesonly = ""
tempsyllablelist = None
#Keep only the first syllable of every word
for item in words:
if item.pos_ != "PUNCT":
FinalOutput += item.text + " "
tempsyllablelist = item._.syllables
if type(tempsyllablelist) == list:
FirstSyllablesonly += str(tempsyllablelist[0]) + " "
FinalOutput += str(tempsyllablelist) + " " #str(item._.syllables) + " "
FinalOutput += str(item._.syllables_count) + " | "
else:
FinalOutput += item.text + " "
FirstSyllablesonly += item.text + " "
FinalOutput = "The first Syllables (Listening Practice): \n" + FirstSyllablesonly + "\nSyllable Analysis:\n" + FinalOutput
return FinalOutput
# For testing purposes
# file_paths = segment_video_with_opencv("path_to_your_video.mp4")
# print(file_paths)
def FirstLetAccronymsSpacy(text):
FinalOutput = ""
doc = nlp(text)
for sent in doc.sents:
for word in sent:
FinalOutput += word.text[0]
FinalOutput += "\n"
return FinalOutput
def MultiOutputInterface(inputtext):
k8sformat = ""
inputwordlist = inputtext.split(" ")
for word in inputwordlist:
k8sformat += word_to_k8s_format(word) + " "
FirstLetAccronyms = FirstLetAccronymsSpacy(inputtext)
AcronymMap = create_acronym_map(inputtext)
Output1 = keep_nouns_verbs(inputtext)
Output2 = keep_nouns(inputtext)
Plurals = onlyplurals(inputtext)
Output3 = TestSplitandUpdate(inputtext)
Output4 = ForeignSyllableListenFormat(inputtext)
return Output3[1], Output3[0], FirstLetAccronyms, AcronymMap[0], AcronymMap[1], Output1, Output2, Plurals, k8sformat, Output4
def lingualinkassist(text, language):
words = text.split(" ")
FinalOutput = "Test \n"
for word in words:
FinalOutput += f"Next lets do '{ word }' in { language }\n"
return FinalOutput
#Have to define inside blocks w4wsidebysidelangdest = gr.Dropdown(choices=langdropdown_choices, label="Choose Language", value="de: german") #["af", "de", "es", "ko", "ja", "zh-cn", "xh", "zu"]
#----------------------------------------------------------------------------------------------------------------------
def w4wsidebysidereadergen(text, langdest):
#FrontRevSentChunk as reference
FinalOutput = ""
Translated = "FWNWO: \n"
words = text.split()
w4wsidebysidtranslator = Translator()
translatedFWO = w4wsidebysidtranslator.translate(text, dest=langdest[:2])
translatedNWO = w4wsidebysidtranslator.translate(words, dest=langdest[:2]) #src or dest
#print(translated)
#print(dir(translatedNWO[0]), "\n")
#FinalOutput += "\n" + translated.text
for obj in translatedNWO:
# print(f"Original Text: {obj.origin}")
# print(f"Translated Text: {obj.text}")
# print(f"Source Language: {obj.src}")
# print(f"Destination Language: {obj.dest}")
# print(f"Pronunciation: {obj.pronunciation}\n")
FinalOutput += obj.origin + f" ({obj.text}) "
Translated += obj.text + " "
speech = gTTS(text=FinalOutput, lang=langdest[:2], slow="False")
speech.save("CurrentSidebySideTTSFile.mp3")
FinalOutput = "Side by Side Version: " + FinalOutput
analysisPrompt = f"{ Translated } and \n\nFWFWO: \n{ translatedFWO.text } \n\nForeign Words Native Word Order and Foreign Word Order \nIf you had to make the notes on the word by word considerations to transform FWNWO to FWFWO what would that be? (A simple game idea where your response will be the rubrik to mark the players response against)"
return FinalOutput, Translated, "FWFWO: \n" + translatedFWO.text, "CurrentSidebySideTTSFile.mp3", analysisPrompt
#https://huggingface.co/spaces/Geonmo/nllb-translation-demo/blob/main/app.py
def nllbtranscload_models():
# build model and tokenizer
#model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
# }
model_dict = {}
#for call_name, real_name in model_name_dict.items():
print('\tLoading model: %s' % 'nllb-distilled-600M' ) #% call_name)
model = AutoModelForSeq2SeqLM.from_pretrained('facebook/nllb-200-distilled-600M') #real_name)
tokenizer = AutoTokenizer.from_pretrained('facebook/nllb-200-distilled-600M') #real_name)
model_dict['nllb-distilled-600M'+'_model'] = model #call_name+'_model'] = model
model_dict['nllb-distilled-600M'+'_tokenizer'] = tokenizer #call_name+'_tokenizer'] = tokenizer
return model_dict
#global model_dict
model_dict = nllbtranscload_models()
nllb_lang_codes = list(flores_codes.keys())
def nllbtransctranslation(source, target, text):
#if len(model_dict) == 2:
model_name = 'nllb-distilled-600M'
start_time = time.time()
source = flores_codes[source]
target = flores_codes[target]
#source = "eng_Latn" #colab test
#target = "aka_Latn" #colab test
model = model_dict[model_name + '_model']
tokenizer = model_dict[model_name + '_tokenizer']
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
output = translator(text, max_length=400) #Check how much this can be extended
end_time = time.time()
output = output[0]['translation_text']
result = {'inference_time': end_time - start_time,
'source': source,
'target': target,
'result': output}
return result['result'], result['inference_time']
def nllbtransctranslationoptionalw4w(source, target, text):
FinalOutput = ""
FinalInference = 0
textlist = text.split()
for item in textlist:
currentitem, currentinference = nllbtransctranslation(source, target, item)
FinalOutput += item + f" ({ str(currentitem) }) "
FinalInference += float(currentinference)
yield FinalOutput, str(FinalInference)
#pip install tokenizers==0.13.3 protobuf==3.20.0 - dependency debugging before convert to docker
#----------------------------------------------------------------------------------------------------------------------------
physical_similarity = {
# Physical transformation similarity
'a': ['e', 'd', 'q', 'o'],
'b': ['d', 'p', 'q', 'h'],
'c': ['e', 'o'],
'd': ['a', 'b', 'p', 'q'],
'e': ['c'],
'g': ['q', 'o'],
'h': ['b', 'n'],
'i': ['l', 'j'],
'j': ['i', 'l'],
'k': ['x'],
'l': ['i', 'j'],
'm': ['n', 'u', 'w'],
'n': ['m', 'u'],
'o': ['a', 'c', 'g', 'q'],
'p': ['b', 'd', 'q'],
'q': ['a', 'b', 'd', 'g', 'o', 'p'],
'r': ['n'],
's': ['z'],
't': ['l'],
'u': ['m', 'n'],
'v': ['w', 'u'],
'w': ['m', 'v'],
'x': ['k'],
'y': ['v'],
'z': ['s'],
}
phonetic_similarity = { # Phonetic similarity
'c': ['k', 's', 'q'],
'f': ['ph'],
'k': ['c', 'q'],
'q': ['c', 'k'],
's': ['c', 'z'],
'x': ['z'],
'z': ['s', 'x'],
# ... other letters
}
def letterbased_guess_word(target, guess):
matching_letters = 0
exact_letters = {}
closest_letters = {}
physical_similar_letters = {}
phonetic_similar_letters = {}
# Alphabet dictionary for calculating distance
alphabet = {chr(i): i - 97 for i in range(97, 123)}
# Count and list exact letter matches in both words
for letter in set(target):
count = min(target.count(letter), guess.count(letter))
if count > 0:
exact_letters[letter] = count
for letter in target:
# Skip if letter is not a lowercase letter
if letter not in alphabet:
continue
# Check for matching letters
if letter in guess:
matching_letters += 1
# Find closest letter in guess based on alphabet distance
closest_letter = min(guess, key=lambda g: abs(alphabet.get(g, 0) - alphabet[letter]))
closest_letters[letter] = closest_letter
# Find physical similar letters in guess
physical_similar_letters[letter] = [g for g in guess if g in physical_similarity.get(letter, [])]
# Find phonetic similar letters in guess
phonetic_similar_letters[letter] = [g for g in guess if g in phonetic_similarity.get(letter, [])]
return {
"matching_letters": matching_letters,
"exact_letters": exact_letters,
"closest_letters": closest_letters,
"physical_similar_letters": physical_similar_letters,
"phonetic_similar_letters": phonetic_similar_letters,
}
#----------------------------------------------------------------------------------------------------------------------------
speedmastery_load_imagesinput = gr.Files(file_count="multiple", type="binary") #, file_types='image')
def speedmastery_load_images(image_files):
# print(image_files)
# #return [image_file for image_file in image_files]
# images = []
# for image_file in image_files:
# # Read the image file and convert it to a PIL.Image object
# image = Image.open(io.BytesIO(image_file))
# images.append(image)
# return images
images = []
for image_file in image_files:
# Save the file to a temporary directory
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, image_file.name)
with open(file_path, 'wb') as f:
f.write(image_file.read())
# Now you can use the file path
image = Image.open(file_path)
images.append(image)
# Optionally, delete the file after processing if it's no longer needed
os.remove(file_path)
return images
#----------------------------------------------------------------------------------------------------------------------------
def whisperlocaltts(filename):
model = whisper.load_model("base")
audio = whisper.load_audio(filename)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
options = whisper.DecodingOptions(language= 'en', fp16=False)
result = whisper.decode(model, mel, options)
if result.no_speech_prob < 0.5:
return result.text
# Define the Gradio interface inputs and outputs for video split
spvvideo_file_input = gr.File(label='Video File')
spvsubtitle_file_input = gr.File(label='Subtitle File')
spvdownload_output = gr.File(label='Download Segmented Files')
Markovlength = gr.Number(value=30, label='Length of generation')
groupinput_text = gr.Textbox(lines=2, label="Enter a list of words")
groupoutput_text = gr.Textbox(label="Grouped words")
Translationchuncksize = gr.Number(value=4998)
RepSched_Num_lines = gr.Number(value=1000, label="number of lines")
randomExposuremessage = randommarquee()
randomExposuremessage2 = randommarquee()
VideoTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
VideoTestSubtitleInput = gr.File(label="select a subtitle file", file_types=[".txt", ".srt", ".vtt"])
VideoSplitTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
SplitVideoOutput = gr.FileExplorer(root_dir='./splitvideo')
with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', secondary_hue='red', neutral_hue='blue', )
gr.HTML('<div style="display: flex; justify-content: center; align-items: center; height: 100%;"> Reading comprehension speed through picture based compression (collage), Live Image Subtitles and Listening Comprehension Test - <a href="https://chat.openai.com/g/g-bYMSVlb8y-lingua-link"> -- Lingua Link (Simple GPT for assistinng image creation) -- </a> | </div><div style="display: flex; justify-content: center; align-items: center; height: 100%;"> ---- Under Construction: Very Slowly figuring out what AI intergrated interface means (Chat vs Forms vs Function calling vs Sensor + Trigger vs Agent) | How to end copy paste once and for all? ---- </div> <div style="display: flex; justify-content: center; align-items: center; height: 100%;"> All the apis from the below space need to be treated like RAG as notes for the LLM to read before providing its answer </div>')
with gr.Accordion("Some Useful Spaces", open=False):
with gr.Accordion("Translation or STT HF Spaces/Sites (Click Here to Open) - Use to get rough translations", open=False):
with gr.Row():
linktotranslate = gr.Dropdown(choices=["https://facebook-seamless-m4t-v2-large.hf.space", "https://hf-audio-whisper-large-v3.hf.space", "https://pyf98-owsm-v3-demo.hf.space", "https://kadirnar-multilingual-translation.hf.space", "https://geonmo-nllb-translation-demo.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
translatespacebtn = gr.Button("Use the chosen URL to load interface with a translate model")
translatespace = gr.HTML("Translate Space Chosen will load here")
translatespacebtn.click(display_website, inputs=linktotranslate, outputs=translatespace)
with gr.Accordion("Audio Gen HF Spaces/Sites (Click Here to Open)", open=False):
with gr.Row():
linktoaudiogen = gr.Dropdown(choices=["https://coqui-xtts.hf.space", "https://suno-bark.hf.space", "https://mrfakename-metavoice-1b-v0-1.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
audiogenspacebtn = gr.Button("Use the chosen URL to load interface with a chat model")
audiogenspace = gr.HTML("Chat Space Chosen will load here")
audiogenspacebtn.click(display_website, inputs=linktoaudiogen, outputs=audiogenspace)
with gr.Accordion("Image Gen or Animation HF Spaces/Sites (Click Here to Open) - Use with the image placeholder in Workflows tab", open=False):
with gr.Row():
linktoimagegen = gr.Dropdown(choices=["https://modelscope-transferanything.hf.space", "https://visionmaze-magic-me.hf.space", "https://wangfuyun-animatelcm.hf.space", "https://artgan-diffusion-api.hf.space", "https://multimodalart-stable-cascade.hf.space", "https://radames-real-time-text-to-image-sdxl-lightning.hf.space", "https://ap123-sdxl-lightning.hf.space", "https://google-sdxl.hf.space", "https://guoyww-animatediff.hf.space", "https://segmind-segmind-stable-diffusion.hf.space", "https://simianluo-latent-consistency-model.hf.space", "https://artificialguybr-studio-ghibli-lora-sdxl.hf.space", "https://artificialguybr-pixel-art-generator.hf.space", "https://fffiloni-sdxl-control-loras.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
imagegenspacebtn = gr.Button("Use the chosen URL to load interface with a chat model")
imagegenspace = gr.HTML("Chat Space Chosen will load here")
imagegenspacebtn.click(display_website, inputs=linktoimagegen, outputs=imagegenspace)
with gr.Accordion("Vision HF Spaces/Sites (Click Here to Open)", open=False):
with gr.Row():
linktovisionund = gr.Dropdown(choices=["https://badayvedat-llava.hf.space", "https://languagebind-moe-llava.hf.space", "https://vision-cair-minigpt4.hf.space", "https://fffiloni-live-vision.hf.space", "https://ysharma-gemini-pro-vision-chat.hf.space", "https://kvikontent-chatgpt-vision.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
visionundspacebtn = gr.Button("Use the chosen URL to load interface with a chat model")
visionundspace = gr.HTML("Chat Space Chosen will load here")
visionundspacebtn.click(display_website, inputs=linktovisionund, outputs=visionundspace)
with gr.Accordion("LLM HF Spaces/Sites (Click Here to Open) - Use 'Acronym Map Creation Space' Tab with this - Ask for Translation of image tags made below, sentence to emojis, Wordlists, Test Conversations, Get Grammar Explanations etc., Can use GPT-4 or new SOTA to review the conversation", open=False):
with gr.Row():
linktochat = gr.Dropdown(choices=["https://sdk.vercel.ai/docs", "https://labs.perplexity.ai/", "https://chat.lmsys.org", "https://stabilityai-stablelm-2-1-6b-zephyr.hf.space", "https://qwen-qwen1-5-72b-chat.hf.space", "https://deepseek-ai-deepseek-coder-7b-instruct.hf.space", "https://01-ai-yi-34b-chat.hf.space", "https://ysharma-zephyr-playground.hf.space", "https://huggingfaceh4-zephyr-chat.hf.space", "https://osanseviero-mistral-super-fast.hf.space", "https://artificialguybr-qwen-14b-chat-demo.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space", "https://ysharma-explore-llamav2-with-tgi.hf.space", "https://mosaicml-mpt-30b-chat.hf.space", "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left. For lymsys / chat arena copy the link and use a new tab")
with gr.Accordion("Some prompt ideas", open=False):
with gr.Accordion("Prompts in text (Manual copy paste)", open=False):
gr.HTML(LLPromptIdeas)
with gr.Group():
promptidea0 = gr.Code(label="Prompt Idea 1", value=LLPromptIdeasasbtns[0])
promptidea1 = gr.Code(label="Prompt Idea 2", value=LLPromptIdeasasbtns[1])
promptidea2 = gr.Code(label="Prompt Idea 3", value=LLPromptIdeasasbtns[2])
promptidea3 = gr.Code(label="Prompt Idea 4", value=LLPromptIdeasasbtns[3])
promptidea4 = gr.Code(label="Prompt Idea 5", value=LLPromptIdeasasbtns[4])
chatspace = gr.HTML("Chat Space Chosen will load here")
chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
with gr.Row():
with gr.Column(scale=1):
gr.HTML(""" <div style="height: 350px; width: 100%; border: 1px solid black; overflow: auto;"> Some useful links <br> <a href='https://github.com/eugeneyan/open-llms'> -- Opensource List -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard'> -- Open LLM Leaderboard -- </a> | <a href='https://openxlab.org.cn/apps'> -- Openxlabs - Huggingface Alternative -- </a> | <a href='https://huggingface.co/spaces/sanchit-gandhi/whisper-jax'> -- Whisper JAX -- </a> | <a href="https://translate.google.com/?hl=en&tab=TT"> -- Google Translate -- </a> | <a href='https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis'> -- Modelscope Text to Video -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion'> -- stable-diffusion 2 -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion-1'> -- stable-diffusion 1 -- </a> | <a href='https://huggingface.co/spaces/kakaobrain/karlo'> -- karlo 1 -- </a> | <a href='https://huggingface.co/spaces/suno/bark'> -- Bark (TTS) -- </a> | <a href='https://chat.lmsys.org/'> -- Offline Text Model Demos -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> | <a href='https://beta.elevenlabs.io/'> -- Eleven Labs -- </a> | <a href='https://www.d-id.com/'> -- Animate an Image -- </a> | <a href='https://voice.ai/'> -- Clone a voice -- </a> | <a href='https://openai.com/pricing'> -- OpenAI pricing -- </a> | <a href='https://huggingface.co/spaces/sohojoe/soho-clip-embeddings-explorer'> -- Image Training Data Search -- </a> | <a href='https://huggingface.co/spaces/huggingchat/chat-ui'> -- Huggingface Chat -- </a> | <a href='https://huggingface.co/spaces/bguisard/stable-diffusion-nano'> -- 128x128 Stable Diffusion (Fast) -- </a> | <a href='https://huggingface.co/spaces/colonelwatch/abstracts-index'> -- Search 95 million research abstracts -- </a> | <a href='https://huggingface.co/datasets/roneneldan/TinyStories'> -- Tiny Stories Dataset -- </a> | <a href='https://huggingface.co/spaces/lykeven/visualglm-6b'> -- Visualglm6b - Discuss images -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/camenduru/potat1'> -- Potat1 Text2vid -- </a> | <a href='https://twitter.com/willdepue/status/1661781355452325889'> -- Alexandria Prohect (Will Deque) - Free Embeddings -- </a> | <a href='https://artsandculture.google.com/'> -- Google Arts and Culture Portal -- </a> | <a href='https://huggingface.co/spaces/Matthijs/whisper_word_timestamps'> -- Word Level Timestamps -- </a> | <a href='https://huggingface.co/spaces/zaanind/NLLB-translation'> -- NLLB 600M Demo -- </a> = <a href='https://github.com/facebookresearch/fairseq/tree/nllb'> -- NLLB Github -- </a> | <a href='https://huggingface.co/spaces/hysts/zeroscope-v2'> -- Zeroscope v2 Text to video -- </a> | <a href='https://huggingface.co/spaces/SpacesExamples/ComfyUI'> -- ComfyUI Text to Image -- </a> | <a href='https://huggingface.co/spaces/DeepFloyd/IF'> -- Deepfloyd IF - Text in image -- </a> | <a href='https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-in-Gradio'> -- ChatGPT Custom Plugins Test Space -- </a> | <a href='https://www.reddit.com/r/LocalLLaMA/'> -- r/LocalLlama -- </a> | <a href='https://www.reddit.com/r/singularity/'> -- r/Singularity -- </a> | <a href='https://huggingface.co/spaces/hysts/SD-XL'> -- SD-XL Test Space -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless_m4t'> -- Seamless M4T - Translation one stop shop -- </a> | <a href='https://huggingface.co/spaces/codellama/codellama-playground'> -- Code Llama playground -- </a> | <a href='https://huggingface.co/spaces/Voicemod/Text-to-Sing'> -- Text to sing -- </a> | <a href='https://huggingface.co/spaces/camenduru-com/webui'> -- Stable Diffusion Webui (Camenduru Space) -- </a> | <a href='https://huggingface.co/spaces/ysharma/WizardCoder34b'> -- Wizard Coder 34B -- </a> | <a href='https://huggingface.co/spaces/chansung/co-write-with-llama2'> -- Cowrite with llama2 -- </a> | <a href='https://huggingface.co/spaces/fffiloni/Image-to-Story'> -- Image to Story -- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://github.com/THUDM/AgentBench'> -- Agent Benchmarks -- </a> | <a href='https://www.convex.dev/ai-town'> -- AI Town Live Demo -- </a> = <a href='https://github.com/a16z-infra/ai-town'> -- AI Town Repository (Deployment]) -- </a> | <a href='https://github.com/joonspk-research/generative_agents/tree/main'> -- Generative Agents: Interactive Simulacra of Human Behavior (Research paper Repository) -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceM4/idefics_playground'> -- IDEFICS - open Multimodal model -- </a> | <a href='https://github.com/facebookresearch/belebele'> -- Belebele (Meta Dataset) -- </a> | <a href='https://huggingface.co/spaces/jbilcke-hf/ai-comic-factory'> -- AI Comic Factory -- </a> | <a href='https://github.com/camenduru'> -- CAMENDURU REPOS -- </a> | <a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> | <a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter (alt to ChatGPT Pro) -- </a> | <a href='https://easywithai.com/fun-ai-tools/'> -- List - Easy with AI -- </a> | <a href='https://huggingface.co/spaces/Xenova/whisper-web'> -- Whisper Web (UI) -- </a> | <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <a href='https://huggingface.co/spaces/AP123/IllusionDiffusion'> -- Illusion Diffusion (Hide words or shapes in the image) -- </a> | <a href='https://huggingface.co/spaces/Shopify/background-replacement'> -- Background replacement - Shopify -- </a> | <a href='https://huggingface.co/spaces/multimodalart/LoraTheExplorer'> -- Lora The Explorer (SDXL) -- </a> | <a href='https://huggingface.co/spaces/XCLiu/InstaFlow'> -- InstaFlow (Under 1 second Inference) -- </a> | <a href='https://github.com/tairov/llama2.mojo'> -- TinyStories on mojo (230+ tk/s) -- </a> | <a href='https://emojis.alexandru.so/p/OHVEmfMwQl'> -- Any Emoji you want - emojijs -- </a> | <a href='https://huggingface.co/spaces/google/sdxl'> -- SDXL on TPUv5 -- </a> | <a href='https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model'> -- LCM - SD1.5 at 7secs per 4 images (after coldstart) -- </a> | <a href='https://huggingface.co/spaces/fffiloni/sdxl-control-loras'> -- SDXL Control Lora -- </a> | <a href='https://huggingface.co/spaces/aadnk/faster-whisper-webui'> -- Whisper WebUI -- </a> | <a href='https://huggingface.co/spaces/guoyww/AnimateDiff'> -- AnimateDiff: Create an image make a video -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless-m4t-v2-large'> -- Seamless m4t v2 -- </a> | <a href='https://huggingface.co/spaces/Otter-AI/OtterHD-Demo'> -- OtterHD: Multimodal model -- </a> | <a href='https://ai.meta.com/blog/ego-exo4d-video-learning-perception/'> -- Ego-exo4d Multimodal dataset -- </a> | <a href='https://imagine.meta.com/'> -- Meta Imagine images (Free) -- </a> | <a href='https://www.mage.space/'> -- Mage Space images (Free) -- </a> | <a href='https://www.bing.com/images/create?FORM=GENILP'> -- Bing Image Creator (Free) -- </a> | <a href='https://jalammar.github.io/'> -- Jay Alammar Blog - Illustrated Transformer, Stable Diffusion and More -- </a> | <a href='https://huggingface.co/spaces/myshell-ai/OpenVoice'> -- OpenVoice - Open Source Voice Clone -- </a> | <a href='https://huggingface.co/spaces/fffiloni/live-vision'> -- Live-Vision HF Space - Live commentary on a video feed demo -- </a> | <a href='https://xenova.github.io/transformers.js/'> -- Transformers JS demo - Xenova (HF) -- </a> | <a href='https://huggingface.co/chat/assistants'> -- Huggingface Assistants -- </a> | <a href='https://huggingface.co/spaces/AP123/SDXL-Lightning'> -- 4-step SDXL Inference through LORA -- </a> | <a href='https://huggingface.co/datasets/HuggingFaceTB/cosmopedia'> -- Cosmopedia - 92 GB synthetic dataset made using Mixtral (25 billion tokens) -- </a> | </div>""")
with gr.Tabs() as nav1:
with gr.Tab("Rep - HTML"):
gr.HTML("UNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know")
gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj"> Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>) on <a href="https://codepen.io">CodePen</a>. </iframe>""")
with gr.Tab("Rep - Gradio"):
gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, description="Word Grouping and Rotation - Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue()
with gr.Tab("Navigation"):
gr.HTML("Primary goal of this space is to help with memorisation --> Two main forms read or listen (rewriting is also an option for mission critical information - acronym map (too time comsuming))")
gr.HTML("Picture Annotation <br> Chorus Focused Word List <br> Merged Subtitles <br> Repetitive Audio (TTS) <br> Word and Sentence Jumbling <br> Unkown: Wordnet <br> Unknown: Wikipeadia <br>")
PracticeExposureInput = gr.Textbox("", placeholder="Exposure practice = look up", label="Exposure at the top")
PracticeExposurebtn = gr.Button("Change Default") #Button CLick is defined under the variable it needs to manipulate to avoid undefined error
gr.Button("Tab Navigation").click(TabNavigation, inputs=None, outputs=[nav1])
with gr.Tab("Words Lists"):
gr.HTML("Stop, Sight(Dolch) and other Wordlists")
gr.HTML("Wikipeadia <br> Basic: <a href='https://en.wikipedia.org/wiki/Dolch_word_list'> -- Dolch (Sight) Words -- </a> | <br> Advanced: <a href='https://en.wikipedia.org/wiki/Blend_word'> -- Blend Word -- </a> | <a href='https://en.wikipedia.org/wiki/List_of_portmanteaus'> -- List_of_portmanteaus -- </a> | ")
gr.HTML("Reddit <br> <a href='https://www.reddit.com/r/wordplay/'> -- Wordplay -- </a> | ")
gr.HTML("Language Tests <br> ")
gr.HTML("Other <br> <a href='https://english.stackexchange.com/'> -- English (StackExchange) -- </a> | <a href='https://english.stackexchange.com/questions/572884/what-is-it-called-when-two-words-are-combined-by-overlapping-each-other'> -- Overlapping Blends (StackExchange) -- </a> | ")
with gr.Tab("Vector Database = Memorisation"):
gr.HTML("Phrasebook on demand in realtime <br><br> Open AI - 10000 * 1000tokens (+- 4000 characters) = 1$ (0.0001 per 1000 tokens / 750 words), Cohere Multilingual = free for personal use / Commercial use = \n Vector Database query = Better than text search but not for logical relationships")
with gr.Tab("Time Estimate Calculator"):
gr.HTML("Repitition = A subconcious time gaame - transparent screens + below repitition assist (Vision) or (Audio)")
gr.Interface(fn=RepititionPracticeTimeCalculator, inputs=["text", "number", "number"], outputs="text")
with gr.Row():
PracticeExposure = gr.HTML(randomExposuremessage)
PracticeExposure2 = gr.HTML(randomExposuremessage2)
PracticeExposurebtn.click(fn=changeexposuretext, inputs=PracticeExposureInput, outputs=PracticeExposure)
with gr.Row():
with gr.Column(scale=1):
gr.HTML("Advanced Repitition = Combinatorics --> to understand a sentence properly you need understanding of every word --> in language that means use with other words --> Combos within the unique words in a sentence, paragraph, page, etc. --> as close to 3 word sentences")
with gr.Column(scale=1):
gr.HTML("<p>Timing Practice - Repitition: Run from it, Dread it, Repitition is inevitable - Thanos --> Repitition of reaction - Foreign in eyes/ears native in mind (For beginners) | Repitition is a multitask activity like driving must be subconcious process to show mastery </p>")
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
with gr.Column(scale=3):
with gr.Tab("General Idea"):
gr.HTML("<b>FINAL VERSION = Image placeholder + Merged Images + Side by Side Audio + UNWFWO Reader script + Spotify/Youtube integration in one interface</b> <br>True mastery is from the relations between each item aka how every word relates to each other - Repitition in the form combinatorics - llm turns these into full sentences / ideas ")
gr.HTML("Focus = Thinking = Audio = Repitition = This space is just ideas for optimising the audio content. - Audio of side by side version -- listen till you can say the foreign before the audio plays it (Knowledge version is Glossary as vocab you must mastering before reading)")
with gr.Accordion("Some Current Incomplete Tests", open=False):
with gr.Group():
gr.HTML("Stable LM 2 zephyr 1.6 Placeholder - llama-cpp-python issues locally")
gr.Interface(fn=lambda name: f"Placeholder to talk to Stable LM. Prompt = {name}", inputs="text", outputs="text")
gr.Interface(fn=whisperlocaltts, inputs="file", outputs="text", description="Incomplete - Whisper base Test - Can record and then copy the text for use")
gr.HTML('Memorisation by string comparison idea <br><br>Result of prompt chain starting with: Lets say I have the strings "red" and "ppalgan" how can I guess the second from the first from just spelling (eg. similar words and distance in the alphabet, ...), how can I use python to do this i.e. output of no matching letters, closest letter to r, then e, then d, a dictionary of letters that look similar eg. d and p, l and I a and d etc.')
gr.Interface(fn=letterbased_guess_word, inputs=["text", "text"], outputs="text", description="letter based guess suggestions (one word to one word is the designed use case)")
gr.HTML("Side by side reading creator (Google Translate) TODO - Roman output of Non roman characters")
with gr.Group():
with gr.Row():
#gr.Interface(fn=w4wsidebysidereadergen, inputs=["text", w4wsidebysidelangdest], outputs=["text", "text", "text"], description="Side by side reading creator")
w4wsidebysideinput = gr.Text(label="Paste Text you want to learn here (wordlists and UDHR can be used as )", placeholder="Enter Text Here. One or Two Paragraphs at the longest ideally")
with gr.Row():
w4wsidebysidelangdest = gr.Dropdown(choices=langdropdown_choices, label="Choose destination language", value="de: german")
#w4wsidebysideaudiosidebyside = gr.Checkbox(label="Audio for side by side")
w4wsidebysidebtn = gr.Button("Create Side by Side, FWNWO, and FWFWO (Just read start to finish of each till you can read the FWFWO without assistance)")
with gr.Row():
w4wsidebysideOutput = gr.Text(label="Side by side", placeholder="Side by side will display here")
w4wsidebysideFWNWOOutput = gr.Text(label="Foreign Word Native Word Order", placeholder="FW NWO will display here")
w4wsidebysideFWFWOOutput = gr.Text(label="Foreign Word Foreign Word Order", placeholder="FW FWO will display here")
with gr.Row():
w4wsidebysideaudioOutput = gr.Audio(sources=["upload"], label="Side by Side in Audio form")
with gr.Row():
w4wsidebysideAnalysisPromptOutput = gr.Text(label="Prompt for LLM analysis", placeholder="Prompt for LLM analysis will display here")
w4wsidebysidebtn.click(fn=w4wsidebysidereadergen, inputs=[w4wsidebysideinput, w4wsidebysidelangdest], outputs=[w4wsidebysideOutput, w4wsidebysideFWNWOOutput, w4wsidebysideFWFWOOutput, w4wsidebysideaudioOutput, w4wsidebysideAnalysisPromptOutput])
with gr.Row():
gr.HTML("To be Added")
with gr.Row():
w4wsidebysideNatSentStructOutput = gr.Text(label="Native Closed class words as Native Sentence Structure", placeholder="Comparison is valuable")
w4wsidebysideForSentStructOutput = gr.Text(label="Foreign Closed class words as Foreign Sentence Structure", placeholder="Comparison is valuable")
with gr.Row():
w4wsidebysideWordCountOutput = gr.Text(label="Word Count", placeholder="Word Count will display here")
w4wsidebysideRandomisedOutput = gr.Text(label="Random Order As Test", placeholder="Randomised version (Transition Tab most left bottom) will display here")
w4wsidebysideQueGenOutput = gr.Text(label="Questions generation as comprehension test", placeholder="Questions generated will display here")
w4wsidebysideUNWFWOOutput = gr.Text(label="HTML as UNWFWO assistant", placeholder="HTML as UNWFWO assistant download will display here")
gr.HTML("Side by side reading creator (NLLB-600M (+-3gb / setting has 400 tokens? as max length for inference optimisation?)- 200 languages vs 107 in googletrans) - <a href='https://github.com/facebookresearch/fairseq/tree/nllb'> -- Fairseq Github -- </a> | inspired by - <a href='https://huggingface.co/spaces/Geonmo/nllb-translation-demo'> -- Geonmo NLLB Demo -- </a> | <a href='https://huggingface.co/spaces/vutuka/nllb-vutuka-translation'> -- Vutuka demo -- </a>")
with gr.Group():
gr.HTML("Under Construction - generator and cpu based to beat gpu cost, cpu wait time and network dependency for local use")
nllbtranscpuinput = gr.Text(label="Paste Text you want to learn here (wordlists and UDHR can be used as )", placeholder="Enter Text Here")
with gr.Row():
nllbtranscpubtnword4word = gr.Button("Create Side by Side Translation")
nllbtranscpulangsrc = gr.Dropdown(choices=nllb_lang_codes, label="Choose source language", value="English")
nllbtranscpulangdest = gr.Dropdown(choices=nllb_lang_codes, label="Choose target language", value="Akan")
#nllbtranscpuword4word = gr.Checkbox(label="word for word?")
nllbtranscpubtn = gr.Button("Create Whole Translation (FWFWO)")
with gr.Row():
with gr.Column(): #scale=4
nllbtranscpudetailsword4wordOutput = gr.Text(label="Side by side Inference Details", placeholder="Side by side Inference Details will display here")
nllbtranscpuOutputword4word = gr.Text(label="Side by side", placeholder="Side by side will display here")
with gr.Column():
nllbtranscpudetailsOutput = gr.Text(label="Inference Details", placeholder="Details will display here")
nllbtranscpuOutput = gr.Text(label="Whole Translation of text", placeholder="Whole Translation will display here")
nllbtranscpubtnword4word.click(fn=nllbtransctranslationoptionalw4w, inputs=[nllbtranscpulangsrc, nllbtranscpulangdest, nllbtranscpuinput], outputs=[nllbtranscpuOutputword4word, nllbtranscpudetailsword4wordOutput])
nllbtranscpubtn.click(fn=nllbtransctranslation, inputs=[nllbtranscpulangsrc, nllbtranscpulangdest, nllbtranscpuinput], outputs=[nllbtranscpuOutput, nllbtranscpudetailsOutput])
gr.Interface(fn=LoadNLTKUDHRText, inputs=NLTKudhr, outputs=["text", "textarea"], description="UDHR as some test texts")
with gr.Tab("Youtube Subs Listening Comprehension"):
gr.HTML("<a href='https://www.lingq.com/en/'>State Management Solution for Word --> Find LingQ Here --> https://www.lingq.com/en/</a>")
with gr.Tab("New - Learning with Youtube"):
gr.HTML("TODO: 1st syllable subtitle. First Syllable of any word is all you need to listen - pair this with Youtube subtitle interface - Listening is ability to spell really fast (real time)")
gr.HTML(" <a href='https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION'> -- artificialguybr's Video Translation/Transcription Space -- </a> | ")
with gr.Group():
gr.HTML("Custom Subtitles Ideas - Realtime Practice = Test (Pause to learn)")
YTTransciptOutDropdown = gr.Dropdown(choices=["https://www.youtube.com/watch?v=UYk43fncV68", "https://youtu.be/dxVaP0-aFIE"], value="https://www.youtube.com/watch?v=UYk43fncV68", allow_custom_value=True)
YTTransciptOutbtn = gr.Button("Transcript to text")
YTTransciptOutVid = gr.HTML('Video will load Here')
gr.Interface(fn=subtitle_generator, inputs=None, outputs=["textbox", "textbox", "textbox"], description='Modified Subtitles Test - will only work after video has been loaded')
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
YTTransciptAnalysedOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
with gr.Row():
YTTransciptOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
with gr.Column(scale=1):
YTTransciptTextOnlyOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
YTTransciptOutbtn.click(fn=YTTransciptAnalysisandLoad, inputs=YTTransciptOutDropdown, outputs=[YTTransciptOutVid, YTTransciptOut, YTTransciptAnalysedOut, YTTransciptTextOnlyOut])
with gr.Tab("Old - Visual - Multiline Custom Video Subtitles"):
gr.HTML("------------------------ INCOMPLETE (Somewhere around the SRT merging and merging process) -------------------------------------")
gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
gr.HTML("""<hr> <p>For Transcripts to any video on youtube use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a> | <a href="https://huggingface.co/spaces/vumichien/whisper-speaker-diarization">https://huggingface.co/spaces/vumichien/whisper-speaker-diarization</a>""")
#gr.HTML("<p>If Space not loaded its because of offline devopment errors please message for edit</p> <hr>")
with gr.Tab("Merged Subtitles (Incomplete)"):
gr.HTML(""" Core Idea = Ability to follow one video from start to finish is more important than number of words (except for verbs) <hr>
Step 1 - Get foreign transcript - WHISPER (Need to download video though - booo) / Youtube / Youtube transcript api / SRT websites <br>
Step 2 - Get Translation of foreign transcript <br>
Step 3 - Word for Word Translation Creation in both Directions (Paste Google Translation here) <br>
""")
gr.Interface(fn=split_srt_file, inputs=["text", SRTLangOptions] , outputs=["text", "file", "text", "text"], description="SRT Contents to W4W Split SRT for Google Translate")
gr.Interface(fn=chunk_srt_text, inputs=['text', Translationchuncksize], outputs=['dataframe','text'], description='Assitant for google translate character limit - aka where to expect cuts in the text')
gr.HTML("Step 4 - Pronounciation (Roman) to Subtitle Format --> GTranslate returns unformatted string")
gr.Interface(fn=splittext, inputs="text", outputs="text", description="Text for w4w creation in G Translate")
gr.HTML("Step 5 - Merge into one file")
with gr.Row():
RomanFile = gr.File(label="Paste Roman")
W4WFile = gr.File(label="Paste Word 4 Word")
FullMeanFile = gr.File(label="Paste Full Meaning")
MacaronicFile = gr.File(label="Paste Macaronic Text")
SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text")
with gr.Row():
MergeButton = gr.Button('Merge the seperate files into one interpolated file (Line by line merge)', )
with gr.Row():
MergeOutput = gr.TextArea(label="Output")
MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput], )
with gr.Row():
gr.Text("Make sure there are 4 spaces after the last subtitle block (Otherwise its skipped)")
CleanedMergeButton = gr.Button('Create a Usable file for SRT')
with gr.Row():
CleanedMergeOutput = gr.TextArea(label="Output")
CleanedMergeButton.click(fn=SRTLineSort, inputs=[MergeOutput], outputs=[CleanedMergeOutput])
with gr.Tab("Split video to segments"):
gr.HTML("<a href='https://www.vlchelp.com/automated-screenshots-interval/'>How to make screenshot in vlc - https://www.vlchelp.com/automated-screenshots-interval/</a><br>")
gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output)
gr.TextArea("Placeholder for ffmpeg command generator and ffmpeg-python code to split video")
gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ")
with gr.Tab("Audio - Only English thoughts as practice"):
gr.HTML("For Audio Most productive is real time recall of native (where your full reasoning ability will always be) <br><hr> Find Replace new lines of the foreign text with full stops or | to get per word translation")
# gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions2], outputs="audio", description="Paste only english words in foreign order and then keep removing the words from this to practice as effectively")
with gr.Tab("Speed through Imagery"):
gr.HTML("<a href='https://chat.openai.com/g/g-bYMSVlb8y-lingua-link'> -- Lingua Link (Simple GPT for assistinng image creation) -- </a> <br>Use with placeholder generator tab below <br> Best for this is 2 nouns as one phrase i.e. nouns as adjectives and then you can a verb (1000 of those will take you far)")
with gr.Accordion("More Details - conversation example", open=False):
gr.Gallery(show_label=True, value=["adult-child-seong-in-namseong-DALL·E 2024-01-17.png", "adult child seong-in namseong DALL·E 2024-01-17 00.33.56.png", "adult (ɔpanyin) child (mmɔfra) DALL·E 2024-01-17 01.08.59.png", "adult (ɔpanyin) child (mmɔfra) DALL·E 2024-01-17 00.59.41.png"], label="Lingua Link Output - Mixed Spelling through Images")
gr.HTML(""" <h1>Adult Child is Seong-in Namseong</h1>
<p>How do we visualize this in one image?</p>
<h2>GPT's Concept</h2>
<p>To visualize "adult child" translated to "seong-in namseong" in Korean, we can create an image that creatively incorporates elements representing both an adult and a child. Here's a concept:</p>
<ul>
<li><strong>Scene:</strong> A park setting with a clear distinction between two halves.</li>
<li><strong>Adult Side:</strong> One half shows an adult man in a business suit, holding a briefcase, standing near a bench with a newspaper and a cup of coffee.</li>
<li><strong>Child Side:</strong> The other half shows a young boy, dressed in playful, colorful clothes, holding a toy airplane, standing near a sandbox with a bucket and spade.</li>
<li><strong>Transition Element:</strong> A tree in the middle, with its leaves transitioning from green (adult side) to vibrant colors (child side), symbolizing the growth and change from childhood to adulthood.</li>
</ul>
<p>This image will represent the concept of an "adult child" or "seong-in namseong" by juxtaposing the characteristics of both stages of life.</p>
<h3>User's Inquiry</h3>
<p>Thats but where are the near spelled words?</p>
<h3>GPT's Revised Concept</h3>
<p>To incorporate words that are spelled similarly to "seong-in namseong," I will first find words in English that are close in spelling to the Korean phrase. Here are three words that somewhat resemble "seong-in namseong" in spelling:</p>
<ol>
<li>Singing - Resembles 'seong-in' in the sound and somewhat in spelling.</li>
<li>Seasoning - Shares some similarity in spelling and phonetics with 'seong-in namseong'.</li>
<li>Song - Similar to 'seong' in 'seong-in'.</li>
</ol>
<p>Now, let's integrate these words into the image concept:</p>
<ul>
<li><strong>Singing:</strong> The adult can be depicted as softly singing or humming a tune, perhaps with a subtle musical note symbol floating in the air.</li>
<li><strong>Seasoning:</strong> The child could be playfully pretending to cook in the sandbox, with toy seasoning bottles.</li>
<li><strong>Song:</strong> There could be a book or a sheet of music with a song's title visible, lying on the bench beside the adult.</li>
</ul>
<p>This revised concept includes elements related to the words "singing," "seasoning," and "song," which are visually connected to the original phrase "seong-in namseong."</p>
""")
gr.Interface(fn=lingualinkassist, inputs=["text","text"], outputs="text", description="Lingua Link Prompt Assistance (Simple Prompts)")
with gr.Tab("Filter Text"):
gr.HTML("Categories for Image Creation <br>1. Extract only nouns <br>2. Extract Acronyms <br>3. Convert verbs to Careers <br>Dall-E 3 best for multi concept images - every thing else = one picture at a time <br>Ask the llm to create a prompt from the nouns extracted or to create english words ot sentences from the acronyms")
gr.Interface(fn=onlyplurals, inputs=["text"], outputs=["text"], description="Only plurals = optimal concepts to learn first as LT work = repitition")
gr.Interface(fn=create_acronym_map, inputs="textbox", outputs="textbox", description="Acronyms")
gr.Interface(fn=keep_nouns, inputs="textbox", outputs="textbox", description="Nouns only")
with gr.Tab("Placeholder Genration"):
gr.HTML("Placeholder for every image of each sentence - Good for ChatGPT + Dall-E (First 16 Characters is part of the filename if you get error)")
with gr.Row():
with gr.Column(scale=4):
imageplaceholderinput = gr.TextArea(placeholder="Enter Text and Get a line by line (stand in for sentences for now) placeholder for image associated with the text")
with gr.Column(scale=1):
imageplaceholderdownload = gr.File()
imageplaceholderbtn = gr.Button("Create the image placeholder")
with gr.Row():
with gr.Column(scale=3):
imageplaceholderoutput = gr.HTML("Preview will load here")
with gr.Column(scale=2):
imageplaceholdertextoutput = gr.Code("The code for the HTML created will come here")
imageplaceholderbtn.click(fn=imagebasedreading, inputs=[imageplaceholderinput], outputs=[imageplaceholderdownload, imageplaceholderoutput, imageplaceholdertextoutput])
with gr.Tab("Word level Placeholder Genration"):
gr.HTML("Placeholder for every image of each word - Good for ChatGPT + Dall-E (First 16 Characters is part of the filename if you get error)")
with gr.Row():
with gr.Column(scale=4):
imageplaceholderinputwordlevel = gr.TextArea(placeholder="Enter Text and Get a word by word placeholder for image associated with the text")
with gr.Column(scale=1):
imageplaceholderdownloadwordlevel = gr.File()
imageplaceholderbtnwordlevel = gr.Button("Create the image placeholder")
with gr.Row():
with gr.Column(scale=3):
imageplaceholderoutputwordlevel = gr.HTML("Preview will load here")
with gr.Column(scale=2):
imageplaceholdertextoutputwordlevel = gr.Code("The code for the HTML created will come here")
imageplaceholderbtnwordlevel.click(fn=imagebasedreadingwordlevel, inputs=[imageplaceholderinputwordlevel], outputs=[imageplaceholderdownloadwordlevel, imageplaceholderoutputwordlevel, imageplaceholdertextoutputwordlevel])
with gr.Tab('Picture Subtitles / Image Slide Show'):
gr.HTML("----------------------------------INCOMPLETE------------------------------------ <br>runs into filepath error - The console error and download link in the files component in app have different paths and I dont know how to get the path in the interface")
gr.Interface(fn=speedmastery_load_images, inputs=speedmastery_load_imagesinput, outputs="gallery", description="Put the images you want to practice or work on")
gr.HTML('placeholder for button to start generator for time based image recognition i.e. Picture Subtitles')
with gr.Tab("UNWFWO - Stateful Reading - Progress Tracking"):
gr.HTML("The problem is to learn you need to repeat things you know that you didnt know this morning - Repititionis only half of solution <br>You need to read new stuff while revising the stuff you didnt know that you just learned aka the things you write as notes <br> Blended Images can help")
gr.Interface(fn=UnknownTrackTexttoApp, inputs="text", outputs=["file", "html", "code"], description="HTML mini App - UNNWFWO (English grammar only for now)(To track verbs you dont know for listening practice). Use the text from here to create lists you use for the TTS section")
gr.Interface(create_acronym_map, inputs='text', outputs=['text', 'text'], description="Acronym Map Generator (per line)")
gr.HTML("The sentences used as notes repitition interface then can count as recently known sentences that you can ignore in favour of the sentences you didnt interact with")
gr.Label("Some Tests - click to hide - unknown word only list")
gr.HTML("------------INCOMPLETE (javascript doesnt and unhide proprely)------------------------")
gr.Interface(fn=hidingbuttontesttranslate, inputs="text", outputs=["code", "html"])
gr.HTML("On the Acronyms you need to underline the verbs")
gr.HTML("Aim for 1000 reps per item in your mind - the end goal for full sentences is to identify the SOV equivalent ASAP")
gr.Interface(fill_lines, inputs=["text", RepSched_Num_lines], outputs="text")
with gr.Tab("Kinesthetic / Mime Translation"):
gr.HTML("placeholder for prompt generator and tests for llama-cpp with slm OR even opencv + a face open pose comparison to viseme face open pose structure")
gr.HTML("Keep nouns and verbs -- turn every noun into a verb -- turn every verb into a pose")
gr.HTML("""Viseme Test with video recording screenshots judged LMM <br><br> # https://melindaozel.com/viseme-cheat-sheet/
<br><br> # https://developer.oculus.com/documentation/unity/audio-ovrlipsync-viseme-reference/
<br><br> # https://docs.aws.amazon.com/polly/latest/dg/viseme.html
<br><br> # https://docs.aws.amazon.com/polly/latest/dg/speechmarkexamples.html
<br><br> # https://docs.aws.amazon.com/polly/latest/dg/ref-phoneme-tables-shell.html
<br><br> # https://docs.aws.amazon.com/polly/latest/dg/ph-table-english-za.html
<br><br> # https://docs.aws.amazon.com/polly/latest/dg/ph-table-korean.html""")
with gr.Tab("Beginner - Listen + Read"):
gr.Label("Closed Eye Recital per new word | 1 new word a minute while recycling the words from the previous minutes")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("Listening - Songs - Chorus <br> Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <br> <b>Tiny Stories dataset is like a graded reader</b> <br>")
# gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions, "checkbox"], outputs="audio", description="Paste chorus lyrics from below here and use TTS or make notes to save here (Or paste anything)")
with gr.Accordion("TTS Spaces", open=False):
TTSspaceoptions = gr.Dropdown(choices=["https://suno-bark.hf.space", "https://coqui-xtts.hf.space"], label="existing whisper spaces")
TTSspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
TTSspaceoptionsOut = gr.HTML()
TTSspaceoptionsbtn.click(fn=display_website, inputs=TTSspaceoptions, outputs=TTSspaceoptionsOut)
gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
with gr.Column(scale=1):
gr.HTML("""Reading - Caption images (SD/Dalle-E) <br> <a href='https://unsplash.com/'> -- Unsplash - free images -- </a> | <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator"> --Huggingface CLIP-Interrogator Space-- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- Tag2Text is faster than clip -- </a> | <br> <a href='https://huggingface.co/spaces/bkhmsi/Word-To-Image'> -- Transform word to an image -- </a> | <a href='https://huggingface.co/spaces/microsoft/Promptist'> -- Promptist (Microsoft) -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> """)
with gr.Accordion("RAM/Tag2Text Space - Create Tags here and Copy paste", open=False):
RAMSpaceLink = gr.Textbox("https://xinyu1205-recognize-anything.hf.space")
RAMSpacetest = gr.HTML("")
RAMSpacetestbtn = gr.Button('Load Space')
RAMSpacetestbtn.click(display_website, RAMSpaceLink, RAMSpacetest)
with gr.Accordion("SAM Space Test", open=False):
SAMSpaceLink = gr.Textbox("https://curt-park-segment-anything-with-clip.hf.space")
SAMSpacetest = gr.HTML("")
SAMSpacetestbtn = gr.Button('Load Space')
SAMSpacetestbtn.click(display_website, SAMSpaceLink, SAMSpacetest)
gr.HTML("Use Shift Enter To put text on new lines if the text doesnt fit <br> if theres an error you have to remove the foreign letters and place roman ones")
gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt) - Describe from one side to the other to make guessing easy")
#with gr.Tab("Transcribe - RASMUS Whisper"):
#gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
with gr.Tab("Beginner - Reading Assitant + Unknown Tracker"):
gr.HTML(" <a href='https://www.onenote.com/learningtools'> -- Microsoft Immersive Reader (Comprehension) -- </a> | <a href='https://www.lingq.com/en/'> LingQ - (Word Familiarity based) </a> ")
gr.HTML("Repitition of things you know is a waste of time when theres stuff you dont know <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p> <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>")
gr.Textbox("Placeholder for a function that creates a set list and can takes a list for known words and auto find replaces the stuff you know out of the content")
gr.Interface(fn=GuidedReading, inputs=["text", guidedreadingseperator], outputs="text", description="Manual POS Tag and Transliteration", examples=textspreprocess)
gr.HTML("Place holder for a translate to english interface so that highlighting can still work as only english supported for now - <a href='https://translate.google.com/'> -- Google Translate -- </a>")
with gr.Tab("Unique word ID - use in Infranodus"):
with gr.Accordion(label="Infranodus", open=False):
gr.HTML(" <a href='https://infranodus.com/'> -- Infranodus - Word Level Knowledge graphs -- </a> | <br> Use the below interfaces to find the items that dont have entries --> These will represent new concepts or people which need to be understood individually to fully understand the text --> Infranodus search will help find related and unrelated investigation paths <br><br> TODO Figure Output Zoom / Image Dimensions")
gr.Image(label="Open Infranodus Screenshot")
gr.Image(label="Open Infranodus Screenshot")
gr.Interface(fn=unique_word_count, inputs="text", outputs="text", description="Wordcounter")
gr.HTML("Use the below interface to fill in the space in this format and then use the chat iframe at the top to ask llm to analyse this: <br><br> Consider how the following sentence meaning will change if the each if the selected word is replaced with one hypernym at a time: <br>Sentence: <br>Hypernyms: ")
gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], description="Word suggestions - Analyse the unique words in infranodus")
gr.Interface(fn=WikiSearch, inputs="text", outputs="text", description="One word at a time Unique word suggestions (wiki articles)")
with gr.Tab("Automating related information linking"):
gr.HTML("Questions - Taking and suggesting questions to ask = new education --> Esp. Infranodus type outer discourse identification as question generation")
gr.HTML("The point of reading is to refine future actions especially problem solving --> Creating problem scenarios = thinking ahead of time = One form of effective reading")
with gr.Tab("Beginner - Vague Language and Guessing POS"):
with gr.Row():
gr.HTML("Some Vague Words - Quantifiers, Pronouns, etc. <br/> <br/> Very, Many, Few, Lots, <br> Lets add 40 words to this list <br> <hr> Find Replace all nouns with something/someone or and for verbs figure out how to generalise them")
gr.HTML("Parts of speech recognition = comprehension <br> Three word sentences will give a easier guessing chance")
gr.HTML('<iframe src="https://spacy-gradio-pipeline-visualizer.hf.space" frameborder="0" width="100%" height="600"></iframe>')
with gr.Tab("Advanced - Making Questions = Reading"):
gr.HTML("Some Example Prompts (Even Mistral 7b is good at this) <br><br>Please make a comprehension test for the following: <br>Please make 10 questions baseed on this text: <br>")
with gr.Row():
gr.TextArea("Paste the text to read here", interactive=True)
gr.TextArea("Make as many questions on the text as you can in native language and then translate", interactive=True)
gr.Dropdown(["Placeholder chunk 1", "Placeholder chunk 2", "Placeholder chunk 3"])
gr.HTML("Load the current chunk here and Put a Dataframe where you have only one column for the questions")
gr.HTML(""" Some considerations for questions to make
Please continue this sentence Types of knowing something = verbatim recall, differences, characteristics, definition of the item, definitions of the items related
<br><br>Mistral-Medium:
Sure! Here are some additional types of knowing something:
Causes and effects: Understanding the causes and effects of a concept or phenomenon can help deepen your knowledge and make it more applicable to real-world situations.
Examples and non-examples: Providing examples and non-examples of a concept can help clarify its meaning and distinguish it from similar concepts.
Analogies and metaphors: Using analogies and metaphors can help make abstract concepts more concrete and easier to understand.
Principles and theories: Understanding the principles and theories that underlie a concept can help you see how it fits into a broader framework of knowledge.
Applications and implications: Understanding the practical applications and implications of a concept can help you see its relevance and importance in real-world contexts.
Historical and cultural context: Understanding the historical and cultural context in which a concept developed can provide valuable insights into its meaning and significance.
Overall, there are many different types of knowing, and each one can contribute to a more complete and nuanced understanding of a topic. By using a variety of approaches and strategies, you can deepen your knowledge and improve your ability to apply it in meaningful ways.
<br><br>GPT-4 Turbo:
Please continue this sentence Types of knowing something = verbatim recall, differences, characteristics, definition of the item, definitions of the items related
Types of knowing something can include verbatim recall, understanding differences, recognizing characteristics, defining the item, and understanding definitions of related items. Beyond these aspects, knowing can also encompass:
Application: The ability to use the information in new and concrete situations. This involves applying rules, methods, concepts, principles, laws, and theories.
Analysis: The capability to break down material into its constituent parts and understand its organizational structure. This includes recognizing the relationships between the parts and the overall structure and purpose.
Synthesis: The skill to put parts together to form a new whole. This could involve creating a new pattern, proposing alternative solutions, or deriving a new set of abstract relations.
Evaluation: Making judgments about the value of ideas or materials. This requires forming opinions and making decisions based on criteria and standards through checking and critiquing.
Procedural Knowledge: Knowing how to do something, which involves procedural steps or actions required to perform a task or solve a problem.
Conditional Knowledge: Understanding when to use certain knowledge, which involves recognizing the applicability of a skill or concept in various contexts.
Metacognitive Knowledge: This is a higher-order type of knowing, which involves awareness and understanding of one's own thought processes. It includes the ability to monitor, regulate, and direct oneself to a desired end, like learning or problem-solving.
Tacit Knowledge: This is the kind of knowledge that is difficult to transfer to another person by writing it down or verbalizing it. It is acquired through personal experience and context, often without conscious awareness.
Explicit Knowledge: In contrast to tacit knowledge, explicit knowledge is that which can be articulated, codified, accessed and verbalized. It can be readily transmitted to others.
Intuitive Knowledge: This refers to understanding or believing something instinctively without the need for conscious reasoning. It's often experienced as a 'gut feeling' or an 'aha' moment that comes seemingly out of nowhere.
Each type of knowing involves different cognitive processes and levels of understanding. The depth and breadth of one's knowledge often depend on the ability to combine these various types of knowing effectively.
""")
with gr.Tab("Transition is the end goal (SOV, SVO, VSO)"):
# gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text", description="Chunks creator")
with gr.Row():
with gr.Column():
gr.Interface(fn=AutoSyllablePractice, inputs="text", outputs="text", description="One Word At A Time | Audio Spelling Practice Using vowels as the seperator")
gr.Textbox("A word is a list of letter as a fact is a list of words. Both are in a specific order. What is most important is practice the order so randomiser is the tool", lines=4)
gr.Interface(fn=RandomiseTextbyType, inputs=["text", RandomiseTextType], outputs="text", description="Randomise order within words, sentences, paragrahs")
with gr.Column():
#with gr.Tab("Collocations (Markov)"):
gr.HTML("Transition is the true nature of logic i.e. like some form of non-semantic embedding that is semantic?")
gr.Interface(fn=build_model, inputs="text", outputs=["text", "text"], description="Create Collocation Dictionary --> Google Kathryn Lingel - Pyambic Pentameter Example - PyCon US for more")
gr.Interface(fn=markov_generate, inputs=["text", Markovlength], outputs="text", description="Generate Text based on the collocations in the text")
with gr.Column():
#with gr.Tab("Spelling + Chunks"):
gr.Textbox("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access", lines=3)
gr.HTML("<p> Spell multiple words simultaneously for simultaneous access </p> <p> Spelling Simplification - Use a dual language list? | Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", description="Noun and Verbs only (Plus punctuation)")
with gr.Tab("Knowledge Ideas - Notetaking"):
gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
<p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
<p>Big Picture = Expand the Heading and the subheadings and compare them to each other</p>
<p>Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first</p>
""")
gr.Label('Placeholder for LLM api plus the drop down function below populate text for each line into dropdowns')
gr.Interface(fn=TextCompFormat, inputs=["textarea", HTMLCompMode], outputs="text", description="Convert Text to HTML Dropdown or Links which you paste in any html file")
gr.Interface(fn=create_collapsiblebutton, inputs=["textbox", "textbox", "textarea"], outputs="textbox", description="Button and Div HTML Generator, Generate the HTML for a button and the corresponding div element.")
with gr.Tab("Real-Time AI - Video/Audio/AR"):
gr.HTML("<div style='display: flex; justify-content: center; align-items: center; height: 100%;'> Agents = Custom Software (Personalised UI and Mods, among other things) = Custom Environments (AR) <a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter -- </a> | <a href='https://github.com/microsoft/autogen'> -- Microsoft Autogen -- </a> | <a href='https://huggingface.co/chat/assistants'> -- Huggingface Assistants -- </a> | </div>")
gr.HTML("Steerable Surveillance system = Assistant --- people will need to manage their own infrastructure or risk total invasion of privacy")
gr.HTML("Cheap: Raspberry Pi / Pydroid and OpenCV and Tkinter = Frontend for OpenAI / OSS vision API as ChatGPT doesnt support video / real-time screenshot yet <br>Expensive - XREAL Air 2, Quest 3, Vision Pro, ")
gr.HTML("HUD Experiment (Waiting for GPT4V API) - Full context of user situation + Ability to communicate in real-time to user using images (H100+ and low enough resolution and low enough steps - it/s = fps) - just like google maps but for real life")
gr.HTML("Some sample Open Interpreter Code - https://huggingface.co/spaces/ysharma/open-interpreter/blob/main/app.py")
gr.Interface(fn=ImageTranslationTest , inputs=[VideoTestInput, VideoTestSubtitleInput], outputs="video")
with gr.Accordion("STT Spaces (sanchit-gandhi spaces have microphone input)"):
Whisperspaceoptions = gr.Dropdown(choices=["https://facebook-seamless-m4t-v2-large.hf.space", "https://hf-audio-whisper-large-v3.hf.space", "https://sanchit-gandhi-whisper-jax-diarization.hf.space", "https://sanchit-gandhi-whisper-jax.hf.space", "https://sanchit-gandhi-whisper-large-v2.hf.space", "https://facebook-seamless-m4t.hf.space"], label="existing whisper spaces")
Whisperspaceoptionsbtn = gr.Button("Load Whisper Space")
WhisperspaceoptionsOut = gr.HTML()
Whisperspaceoptionsbtn.click(fn=display_website, inputs=Whisperspaceoptions, outputs=WhisperspaceoptionsOut)
with gr.Accordion("Image as prompt Spaces"):
Imagepromptspaceoptions = gr.Dropdown(choices=["https://otter-ai-otterhd-demo.hf.space", "https://adept-fuyu-8b-demo.hf.space", "https://badayvedat-llava.hf.space", "https://xinyu1205-recognize-anything.hf.space"], label="existing Image prompt spaces")
Imagepromptspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
ImagepromptspaceoptionsOut = gr.HTML()
Imagepromptspaceoptionsbtn.click(fn=display_website, inputs=Imagepromptspaceoptions, outputs=ImagepromptspaceoptionsOut)
gr.HTML("Video Dubbing - <a href='https://huggingface.co/spaces/artificialguybr/video-dubbing'> -- artificialguybr's video dubbing -- </a> | <br> Real Time video dubbing will be a true gamechanger")
with gr.Accordion("Old Ideas to consider", open=False):
gr.HTML("Nicolai Nielsen Youtube channel - aruco markers = position --> can test using premade ones from an image search")
gr.Textbox("Alpha Test version = Real time Lablling of All things in view using SAM and Clip Interrogator and OpenCV on pydroid --> Adjusted Demo")
gr.HTML("Some Prompt ideas --> Prompt: Describe the place where these descriptions may be (You job is to be speculative for brainstorming purposes): A dog and a boy, the area is texas, the weather is sunny, the date is 01 May 2021 <hr> Prompt Content Ideas Ideas Clip Interrogator + Location Data aka tags for place, location and time + general news updates on the location + overview of the items in the location <br> Location based advise is most important but after that is information observed by appliances in the location eg. Times Computer turned on, times geyser inspected, amount of time keys havent been touched etc. <br> each location will have an ai personality that will relay more information ")
gr.HTML("<a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a>")
with gr.Tab("Incomplete Tests and Experiments"):
with gr.Tab("Multi Output and other ideas"):
with gr.Row():
with gr.Column():
gr.HTML("Test using gradio space/interfaces through the api as function calls for gpt3.5 and 4</b>")
gr.HTML("Roblox as test for ability to describe? - <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <br> ")
gr.HTML("State Management and Education <br> Education = Learning things you didnt know yesterday and not forgetting more than you learn <br><br> What you didnt know forms = <br> Glossary <br> Lists <br> Formulas <br> graphs <br> Procedures <br> <br> for each you will need a seperate way to track the progress but amount of times + recency = approximate state ")
with gr.Column():
gr.HTML("<span style:{'fontsize: 20'}>Start at Unkown Tracker if unseure<span> <br> UNNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know <br><br> General Ideas in this space - Speed of Learning = Avoid Things you know like the plague -- How to track what you know -- Counter is easiest and How you feel is the hardest (The more you know, the more confusion on what you dont know as you probably werent keeping track) <br><br> Visulisation of long text - Bottom of this page <br> Wordlist - 1 new word at a time per minute in the space to the left <br> Youtube Video Watching - Subtitles Tab <br> Reading - Unknown Tracker Tabs <br> Longer Text Memorising - Acronym Map Creation Tab and Transition Tab <br> Brainstorming - Reading Assistant <br> Random Exposure <br> ")
gr.Interface(fn=MultiOutputInterface, inputs=TestSplitandUpdateinput, outputs=["button", "text", "text", "text", "text", "text", "text", "text", "text", "text"])
with gr.Tab("Order based Forcing content into time (Time is the bottleneck)"):
gr.Label("Inspect the Transition Tab last item in left most column - RandomiseTextbyType - Incomplete, but this plus timer will work well achieve what this space aims to achieve - LLMs would choose the next set of words based on the last batch and its knowledge of your vocab level or even your current location (using phone as sensors) and can make image/audio prompts to make more engaging")
gr.Label("Placeholder for take in list and return 10 items in correct order for 20 seconds and 20 seconds to assign order to each word using numbers input - generator with blocks 20 seconds to understand what was wrong and move on")
gr.Label("Placeholder for long text version as well - Order of the sentence or sentence spans (spacy) is what is what most important in long text - you cant organise you dont know")
with gr.Tab("Repetition Injected Text"):
gr.Label("Optimal Study Reps is inbetween new information acquisition - i.e. any thing you havent read already")
gr.Interface(fn=RepititionInjectedReading, inputs=[Repsplitdropdown, "text", "text"], outputs="text")
with gr.Tab("Graph Based Reading", id="1"):
gr.Textbox('Parts of Speech based | Automating the Notetaking Tab either directly or using visual llm to use this interface efficiently')
gr.HTML("Types of comprehension agent <hr> Speed of Comprehension = Verb comprehension <br> From the following please extract the verbs <br> now explain each in context <br> Next, use picture descriptions for each word in the verb list <br> Create combinations using the verb list <hr> ")
gr.HTML("How VERBS RELATE TO EACH OTHER --> Shared Nodes - what other verbs are connected to the noun in a INFRANODUS With POS Tag filters")
gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")
gr.HTML("Sentence to PyDot graph")
gr.HTML("Currently a bug that locks all buttons in the space when you use this above example - Reload to fix")
#with gr.Tab("Gradio Client Tests"):
# gr.HTML("How to return componets here in gradio (as each client interface needs different inputs) like in react")
with gr.Tab("Current Ideas to edit old sections"):
gr.HTML("The core themes = scheduling (randomisation and calendar marking), speed practice, visualisation, and audio, repitition, compression and finally Tracking and only learning the unknown")
gr.HTML("Parts that are already done - Repition and scheduling (randomisation) on the sidebar, compresion using the acronym tab, Audio in the beginning tab, unknown partially in HTML creator")
gr.HTML("Parts that are not done - Visualisation (of acronyms / duo word sets / nouns and verbs) - The image placeholder creator script, Tracking (private = database, public = textfile export), calendar based scheduling aka alert based ")
gr.HTML("React Version of the app can combine all of these use cases into one component - so far tracking, placeholder and partially scheduling have been done")
gr.Label('True speed simultaneous - which is a boolean state = practice at simulataneous to get simultaneous |||| Another way to be fast is to practice simultaneously with the varios SOVs i.e. when you read a noun the verb must appear immediately and vice versa |||| Simultaneous Spelling is the other way to practice |||| The main goal of all reading is that next time you read you take less time this time: |||| Spped = ability to anticipate the next word |||| Anticipation of a sentence = POV |||| ')
with gr.Accordion("Random Ideas"):
gr.HTML("<hr>(Part to be formatted as System prompt for model used as the help admin for the app) Objective - Learn vocab from video/music and have record of how far you got using as overengineered solution (to keep upto date with SOTA AI models and use cases) <br>Current Workflow = One Youtube video as focus for a week or until learned (i.e. instant recognition recall of vocab in random order exposure) <br>Timeline Brainstorm = Know Nothing (Just need Exposure - Random 10% suggesed as starting point) --- Know a little (Remove known) --- Know half (UNNWFWO) <hr> ")
gr.HTML("""<p>Spaces Test - Still Undercontruction --> Next Milestone is Turning this interface handsfree | Knowledge is a Language but productive knowledge is find replace as well | LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? --> Questions? -->
<p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p> """)
gr.HTML("<p>Target 0: Mnemonics as title of images --> Comprehensible input <br> Target 1: Dual audio at word Level while using repitition to train random recall --> Word level Time <br> Target 2: Video --> Split by sentence --> each word repeated (60) + each phrase (10) + each sentence (10) --> TTS file for practice --> State Management/Known word Tracker <br>-----------------------<br> The trick is minimum one minute of focus on a new word --> Listening is hard because there are new word within seconds and you need repeated focus on each to learn </p> <p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p> <p>Listening is hard due to different word order and word combinations (collocations more important than single words)</p> <hr>")
gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
with gr.Tab("Simultanoues Practice Zone"):
gr.Label("Audio based space where you must look at the corresponding text for the audio thats playing as simultaneous practice")
gr.DataFrame(None, headers=["text", "audio"], label="Add text pairs to practice", interactive=True)
gr.HTML("Below you can create and listen to the audio")
gr.Interface(fn=SimultaneousSpellingPrac, inputs=["text"], outputs=["text"], title="Simultaneous SpellingOrder fast fast practice --> 1 letter a word = fastest read")
gr.Interface(fn=FirstLetterSummary, inputs=["text"], outputs=["text"], title="Order fast fast practice --> 1 letter a word = fastest read")
gr.Interface(fn=imagebasedreading, inputs=["text"], outputs=["file", "html", "text"], title="Placeholder for every newline")
with gr.Tab("Long Text Analysis"):
gr.HTML("For Long text searches are useful under time pressure and also bring all direct interactions with search terms - a word is defined by those around it")
gr.Label("Placeholder for old code for concordance and word counting in other test space")
with gr.Tab("Video Segmentation with OpenCV Test"):
gr.Interface(fn=segment_video_with_opencv, inputs=VideoSplitTestInput, outputs=SplitVideoOutput, description="Split video into even increments for better study tracking ")
with gr.Tab('Acronym Map Creation Space'):
gr.HTML("Acronym cant be read with previous attentive reading - accurate measure of known vs unknown")
with gr.Row():
with gr.Accordion('Acronym Map/Skeleton Creator'):
gr.HTML("Moved to Progress for now")
with gr.Accordion('Test with LLM'):
gr.Label('Letters are always easier to recall than whole words. GPT 4 and above best suited for this prompt but can test anywhere')
gr.HTML('Please help me study by making a acronym map for the maths ontology (Ask if theres questions)')
gr.TextArea('', label='Paste LLM response')
gr.HTML('Good but we need to now create a 9 Acronym based words - 1 for the headings together and then one each for the subheadings')
gr.TextArea('', label='Paste LLM response')
with gr.Accordion(''):
gr.HTML('If study content was a map the first letters shape of the whole text = Roads')
gr.HTML('Known = ability to match an item to a retrieval cue instantly - Retrieval cue for the whole text = Acronym Map')
with gr.Tab("Thinking Practice (POS)"):
gr.HTML("By removing all nouns and verbs you get a format to practice thinking about your words to use to make sentences which make sense within constraints")
with gr.Row():
with gr.Column():
with gr.Tab("Sentence to Practice Format"):
gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], description="Comprehension reading and Sentence Format Creator")
with gr.Column():
gr.HTML("<a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> |")
gr.Textbox(label='Use this text to hold translations of the SQL rows in the above linked dataset (A kind of What I say vs what I want)')
lliface.queue().launch(share=True) #docker #(inbrowser="true") #colab |