File size: 151,414 Bytes
2c4ef8c
e3a5325
2c4ef8c
 
8c74afb
196b595
4cc9c49
b325a26
32962aa
 
7f40716
 
 
4608ef6
 
 
 
e3a5325
4608ef6
e5c0437
cdbd74c
 
f20ffae
 
 
 
134bdb1
 
 
a68ce48
864431b
 
e3a5325
 
 
5fa4476
864431b
0df12c6
a04807a
 
93e074d
e3a5325
 
 
 
 
 
 
 
 
 
5fa4476
ec3f1ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8e5e9
864431b
ec3f1ab
 
 
 
 
 
f20ffae
 
 
 
 
 
 
864431b
 
e3a5325
2c4ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
 
 
 
 
 
 
 
 
 
2c4ef8c
 
 
 
 
 
 
 
 
 
 
 
 
0aafd85
 
 
 
 
 
 
8a460a9
 
 
0aafd85
8a460a9
 
 
 
 
 
 
2c4ef8c
 
 
e3a5325
2c4ef8c
0aafd85
2c4ef8c
 
8a460a9
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
8a460a9
 
2c4ef8c
e9e3195
 
 
 
 
 
 
 
 
 
 
 
 
0aafd85
8a460a9
 
 
 
 
 
 
0aafd85
 
 
 
 
 
e9e3195
0aafd85
e9e3195
8a460a9
 
 
 
2c4ef8c
4cc9c49
 
 
8a460a9
4cc9c49
 
 
ac8d93f
e5579ec
42fd0f6
2931540
42fd0f6
 
 
 
 
 
 
 
9c949f0
 
b325a26
8a460a9
9c949f0
 
fb38229
c7cc4f2
b910e0e
8a460a9
9c949f0
b325a26
e3a5325
 
5fa4476
a6c90d7
 
 
e3a5325
4608ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b325a26
32962aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
24185ae
 
 
 
 
 
 
f20ffae
24185ae
f20ffae
4608ef6
 
24185ae
 
f20ffae
 
 
 
 
 
24185ae
f20ffae
 
 
4608ef6
f20ffae
 
 
24185ae
f20ffae
454d167
e3a5325
5fa4476
e5c0437
 
 
 
 
 
 
 
 
 
5fa4476
ac8d93f
eec7d18
 
5fa4476
 
 
 
 
 
eec7d18
 
ac8d93f
 
5fa4476
e5c0437
ac8d93f
 
 
 
 
 
 
5fa4476
 
cdbd74c
ac8d93f
 
5fa4476
 
 
e5c0437
5fa4476
ac8d93f
 
 
5fa4476
ac8d93f
e5c0437
 
 
 
 
 
 
 
 
 
 
 
ac8d93f
e5c0437
ac8d93f
 
 
 
 
 
 
 
 
 
 
 
 
8a460a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8d93f
7f40716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4608ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ffae
4608ef6
 
 
 
cdbd74c
4608ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8211e6
 
4608ef6
 
 
 
 
 
 
 
 
 
 
a8211e6
4608ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f40716
e5c0437
 
 
 
 
 
 
 
 
134bdb1
e5c0437
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
e5c0437
 
 
 
 
e3a5325
 
e5c0437
 
 
 
134bdb1
e5c0437
 
134bdb1
e5c0437
 
 
 
 
 
 
134bdb1
e5c0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
 
e5c0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
e5c0437
134bdb1
e5c0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
 
 
e5c0437
 
 
 
 
 
 
134bdb1
 
 
 
 
e3a5325
134bdb1
 
cdbd74c
 
 
 
 
 
134bdb1
e5c0437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdbd74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c90d7
 
 
cdbd74c
 
134bdb1
 
cdbd74c
134bdb1
 
cdbd74c
134bdb1
f20ffae
134bdb1
f20ffae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
 
f20ffae
7c8e5e9
 
 
 
e5c0437
a6c90d7
 
134bdb1
f20ffae
 
 
 
 
 
 
 
 
 
 
 
864431b
 
 
 
134bdb1
a6c90d7
 
 
 
 
 
 
 
 
f20ffae
 
a6c90d7
f20ffae
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c90d7
 
 
134bdb1
 
f20ffae
 
98cbb56
f20ffae
 
134bdb1
 
 
 
 
 
f20ffae
 
 
 
 
 
 
 
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8e5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98cbb56
 
7c8e5e9
 
 
 
864431b
7c8e5e9
 
 
864431b
 
 
 
 
 
7c8e5e9
 
864431b
7c8e5e9
 
 
864431b
7c8e5e9
 
98cbb56
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
864431b
 
e3a5325
864431b
 
 
 
 
 
 
 
e3a5325
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
864431b
 
 
 
 
 
 
 
e3a5325
864431b
 
e3a5325
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
 
 
 
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c90d7
7f40716
 
 
 
 
e5c0437
 
 
 
454d167
cdbd74c
7c8e5e9
cdbd74c
f20ffae
 
a6c90d7
f20ffae
134bdb1
 
864431b
a6c90d7
cdbd74c
e3a5325
864431b
 
e3a5325
864431b
 
 
7c8e5e9
f20ffae
e3a5325
864431b
134bdb1
 
 
864431b
 
 
 
 
 
134bdb1
 
7c8e5e9
 
e3a5325
7c8e5e9
 
 
e3a5325
 
f20ffae
 
e3a5325
134bdb1
 
e3a5325
864431b
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
134bdb1
864431b
134bdb1
 
 
864431b
 
 
 
 
e3a5325
 
864431b
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
 
 
e3a5325
 
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
e3a5325
 
864431b
 
e3a5325
 
864431b
 
 
 
98cbb56
e3a5325
98cbb56
 
7c8e5e9
 
e3a5325
 
 
 
cdbd74c
134bdb1
a8211e6
 
a6c90d7
 
134bdb1
7c8e5e9
134bdb1
 
 
a8211e6
 
 
 
f20ffae
 
 
 
 
 
 
 
 
 
 
a8211e6
f20ffae
cdbd74c
 
134bdb1
 
 
 
7c8e5e9
134bdb1
 
 
 
864431b
 
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
864431b
134bdb1
 
 
 
 
e3a5325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ffae
 
5fa4476
cdbd74c
f20ffae
a8211e6
cdbd74c
 
 
 
 
 
 
 
a8211e6
cdbd74c
 
134bdb1
cdbd74c
 
 
 
 
 
134bdb1
cdbd74c
f20ffae
134bdb1
e3a5325
 
864431b
 
134bdb1
e3a5325
 
134bdb1
 
 
 
e3a5325
134bdb1
 
 
864431b
134bdb1
 
 
 
 
 
e3a5325
 
 
 
 
 
 
 
 
 
134bdb1
 
 
 
 
 
 
 
e3a5325
134bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864431b
98cbb56
 
864431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134bdb1
e3a5325
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
from googletrans import Translator
from googletrans import LANGUAGES
import spacy
import gradio as gr
import nltk
from nltk.corpus import wordnet
import wikipedia
import re
import time
import random
import os
import zipfile
import ffmpeg
from gtts import gTTS
#from io import BytesIO
from collections import Counter
from PIL import Image, ImageDraw, ImageFont
import io
import numpy as np
from docx import Document
import textwrap
import pandas as pd
import pykakasi
import hangul_romanize
import pinyin
from langdetect import detect
import datetime
import cv2
import math
from langchain.document_loaders import YoutubeLoader #need youtube_transcpt_api and pytube installed
from youtube_transcript_api import YouTubeTranscriptApi
from spacy_syllables import SpacySyllables #https://spacy.io/universe/project/spacy_syllables/
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes #- figure this out after it works

#When I forgot about the readme file ChatGPT suggested these - Leaving to remember the Readme.md must be updated as well
#print(gr.__version__)
#import subprocess
#subprocess.run(["pip", "install", "--upgrade", "gradio==3.47.1"]) #For huggingface as they sometimes install specific versions on container build

#Direct and API based spaces
#Make new spaces to to debug inference 
#https://huggingface.co/spaces/FM-1976/Starling7B-PlayGround - ctransformers
#https://huggingface.co/spaces/FM-1976/StableLM-Zepyhr-3B_Playground - llamacpp
#https://huggingface.co/spaces/julien-c/zero-gpu-demo/blob/main/app.py - switch the gpu on or off in the interface
#Custom gradio components - https://huggingface.co/freddyaboulton
#Florida map in gradio component - https://huggingface.co/spaces/freddyaboulton/gradio_folium (folium)
#https://huggingface.co/spaces/freddyaboulton/gradio_pdf/blob/main/Dockerfile - PDF component
#https://huggingface.co/spaces/jbilcke-hf/faster-image-server/blob/main/app.py - sdxl-turbo api server idea --> test on lambdalabs with share true

#Uncomment these for Huggingface
nltk.download('maxent_ne_chunker') #Chunker
nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
nltk.download('words') #200 000+ Alphabetical order list
nltk.download('punkt') #Tokenizer
nltk.download('verbnet') #For Description of Verbs
nltk.download('omw')
nltk.download('omw-1.4') #Multilingual Wordnet
nltk.download('wordnet') #For Definitions, Antonyms and Synonyms
nltk.download('shakespeare')
nltk.download('dolch') #Sight words
nltk.download('names') #People Names NER
nltk.download('gazetteers') #Location NER
nltk.download('opinion_lexicon') #Sentiment words
nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
nltk.download('udhr') # Declaration of Human rights in many languages


spacy.cli.download("en_core_web_sm")
spacy.cli.download('ko_core_news_sm')
spacy.cli.download('ja_core_news_sm')
spacy.cli.download('zh_core_web_sm')
spacy.cli.download("es_core_news_sm")
spacy.cli.download("de_core_news_sm")

nlp_en = spacy.load("en_core_web_sm")
nlp_de = spacy.load("de_core_news_sm")
nlp_es = spacy.load("es_core_news_sm")
nlp_ko = spacy.load("ko_core_news_sm")
nlp_ja = spacy.load("ja_core_news_sm")
nlp_zh = spacy.load("zh_core_web_sm")
nlp_en_syllable = spacy.load("en_core_web_sm")
nlp_en_syllable.add_pipe("syllables", after="tagger") #https://spacy.io/universe/project/spacy_syllables/
langdropdown_choices = [f"{code}: {name}" for code, name in LANGUAGES.items()]

nlp = spacy.load('en_core_web_sm')
translator = Translator()

def Sentencechunker(sentence):
    Sentchunks = sentence.split(" ")
    chunks = []
    for i in range(len(Sentchunks)):
        chunks.append(" ".join(Sentchunks[:i+1]))
    return " | ".join(chunks)

def ReverseSentenceChunker(sentence):
    reversed_sentence = " ".join(reversed(sentence.split()))
    chunks = Sentencechunker(reversed_sentence)
    return chunks

def three_words_chunk(sentence):
    words = sentence.split()
    chunks = [words[i:i+3] for i in range(len(words)-2)]
    chunks = [" ".join(chunk) for chunk in chunks]
    return " | ".join(chunks)

def keep_nouns_verbs(sentence):
    doc = nlp(sentence)
    nouns_verbs = []
    for token in doc:
        if token.pos_ in ['NOUN','VERB','PUNCT']:
            nouns_verbs.append(token.text)
    return " ".join(nouns_verbs)

def keep_nouns(sentence):
    doc = nlp(sentence)
    nouns = []
    for token in doc:
        if token.pos_ in ['NOUN', 'PUNCT']:
            nouns.append(token.text)
            if token.text == '.':
                nouns.append("\n")
    return " ".join(nouns)

def unique_word_count(text="", state=None):
    if state is None:
        state = {}
    words = text.split()
    word_counts = state
    for word in words:
        if word in word_counts:
            word_counts[word] += 1
        else:
            word_counts[word] = 1
    sorted_word_counts = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
    return sorted_word_counts,    

def Wordchunker(word):
    chunks = []
    for i in range(len(word)):
        chunks.append(word[:i+1])
    return chunks

def BatchWordChunk(sentence):
    words = sentence.split(" ")
    FinalOutput = ""
    Currentchunks = ""
    ChunksasString = ""
    for word in words:
        ChunksasString = ""
        Currentchunks = Wordchunker(word)
        for chunk in Currentchunks:
          ChunksasString += chunk + " "
        FinalOutput += "\n" + ChunksasString
    return FinalOutput

# Translate from English to French

langdest = gr.Dropdown(choices=langdropdown_choices, label="Choose Language", value="de: german") #["af", "de", "es", "ko", "ja", "zh-cn"]

ChunkModeDrop = gr.Dropdown(choices=["Chunks", "Reverse", "Three Word Chunks", "Spelling Chunks"], label="Choose Chunk Type", value="Chunks")

def FrontRevSentChunk (Chunkmode, Translate, Text, langdest):
    FinalOutput = ""
    TransFinalOutput = ""
    if Chunkmode=="Chunks": 
        FinalOutput += Sentencechunker(Text)
    if Chunkmode=="Reverse":
        FinalOutput += ReverseSentenceChunker(Text)
    if Chunkmode=="Three Word Chunks": 
        FinalOutput += three_words_chunk(Text) 
    if Chunkmode=="Spelling Chunks":
        FinalOutput += BatchWordChunk(Text)
    
    if Translate: 
        TransFinalOutput = FinalOutput
        translated = translator.translate(TransFinalOutput, dest=langdest[:2])
        FinalOutput += "\n" + translated.text
    return FinalOutput

# Define a function to filter out non-verb, noun, or adjective words
def filter_words(words):
    # Use NLTK to tag each word with its part of speech
    tagged_words = nltk.pos_tag(words)

    # Define a set of parts of speech to keep (verbs, nouns, adjectives)
    keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'}

    # Filter the list to only include words with the desired parts of speech
    filtered_words = [word for word, pos in tagged_words if pos in keep_pos]

    return filtered_words

def SepHypandSynExpansion(text):
    # Tokenize the text
    tokens = nltk.word_tokenize(text)
    NoHits = ""
    FinalOutput = ""
    
    # Find synonyms and hypernyms of each word in the text
    for token in tokens:
      synonyms = []
      hypernyms = []
      for synset in wordnet.synsets(token):
          synonyms += synset.lemma_names()
          hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
      if not synonyms and not hypernyms:
          NoHits += f"{token} | "
      else:
          FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n"
    NoHits = set(NoHits.split(" | "))  
    NoHits = filter_words(NoHits)
    NoHits = "Words to pay special attention to: \n" + str(NoHits)
    return NoHits, FinalOutput


def WikiSearch(term):
    termtoks = term.split(" ")
    
    for item in termtoks:
      # Search for the term on Wikipedia and get the first result
      result = wikipedia.search(item, results=20)
    return result 

def create_dictionary(word_list, word_dict = {}):
    word_list = set(word_list.split(" "))
    for word in word_list:
        key = word[:2]
        if key not in word_dict:
            word_dict[key] = [word]
        else:
            word_dict[key].append(word)
    return word_dict

def merge_lines(roman_file, w4w_file, full_mean_file, macaronic_file):
    files = [roman_file, w4w_file, full_mean_file, macaronic_file]
    merged_lines = []
    
    with open(roman_file.name, "r") as f1, open(w4w_file.name, "r") as f2, \
            open(full_mean_file.name, "r") as f3, open(macaronic_file.name, "r") as f4:
        for lines in zip(f1, f2, f3, f4):
            merged_line = "\n".join(line.strip() for line in lines)
            merged_lines.append(merged_line)
    
    return "\n".join(merged_lines)

TTSLangOptions = gr.Dropdown(choices=langdropdown_choices, value="en", label="choose the language of the srt/text accent") #["en", "de", "es", "ja", "ko", "zh-cn"]
TTSLangOptions2 = gr.Dropdown(choices=langdropdown_choices, value="en", label="choose the language of the srt/text accent")

def TTSforListeningPractice(text, language = "en", Repeat10x = False):
    if Repeat10x:
        text = text * 10
    speech = gTTS(text=text, lang=language[:2], slow="False")
    speech.save("CurrentTTSFile.mp3")
    #file = BytesIO()
    #speech.write_to_fp(file)
    #file.seek(0)
    return "CurrentTTSFile.mp3" #file

def AutoChorusInvestigator(sentences):
    sentences = sentences.splitlines()
    # Use Counter to count the number of occurrences of each sentence
    sentence_counts = Counter(sentences)

    # Identify duplicate sentences
    duplicates = [s for s, count in sentence_counts.items() if count > 1]

    FinalOutput = ""
    if len(duplicates) == 0:
        FinalOutput += "No duplicate sentences found in the file."
    else:
        FinalOutput += "The following sentences appear more than once in the file:"
        for sentence in duplicates:
            FinalOutput += "\n" + sentence
    return FinalOutput

def AutoChorusPerWordScheduler(sentences):
    words = set(sentences.split(" "))
    wordsoneattime =[]
    practicestring = ""

    FinalOutput = "This is supposed to output the words in repetition format (i.e. schedule for repitition) \nCurrent Idea = 1 new word every min and 1 old word every second" + "\n\nWords: \n"
    for word in words:
        wordsoneattime.append(word)
        for i in range(0, 59):
            practicestring += word + " "
            practicestring += random.choice(wordsoneattime) + " "    
        FinalOutput += word + "\n "
        practicestring += "\n"

    FinalOutput += practicestring
    return FinalOutput

def group_words(inlist):
    inlisttoks = inlist.split(" ")
    inlistset = set(inlisttoks)

    word_groups = []
    current_group = []

    for word in inlisttoks:
        current_group.append(word)
        if len(current_group) == 10:
            word_groups.append(current_group)
            current_group = []
    if current_group:
        word_groups.append(current_group)

    current_group_index = 0
    current_group_time = 0

    while True:
        if current_group_time == 60:
            current_group_index = (current_group_index + 1) % len(word_groups)
            current_group_time = 0
        else:
            if current_group_time % 10 == 0:
                random.shuffle(word_groups[current_group_index])
            current_group_time += 10

        yield " ".join(word_groups[current_group_index]) 
        time.sleep(10) 

def split_verbs_nouns(text):
    nlp = spacy.load("en_core_web_sm")
    doc = nlp(text)
    
    verbs_nouns = []
    verbs_nouns_str = ""
    other_words = []
    other_words_str = ""
    pos_string = []

    for token in doc:
        if token.pos_ in ["VERB", "NOUN"]:
            verbs_nouns_str += token.text + " || "
            other_words_str += "__ " 
            #verbs_nouns.append(token.text)
        #elif token.text in [punct.text for punct in doc if punct.is_punct]:
        #    verbs_nouns.append(token.text)
        #    other_words.append(token.text)
        else:
            other_words_str += token.text + " || "
            #other_words.append(token.text)
        #pos_string.append(token.pos_)

    verbs_nouns_text = verbs_nouns_str  #" ".join(verbs_nouns)
    other_words_text = other_words_str  #" ".join(other_words)
    pos_string_text = "Debug Test" #" ".join(pos_string)
    
    return other_words_text, pos_string_text, verbs_nouns_text

SRTLangOptions = gr.Dropdown(choices=["en", "ja", "ko", "zh-cn"], value="en", label="choose the language of the srt") #Left as these four as spacy function

def save_string_to_file(string_to_save, file_name, srtdocx):
    with open(file_name, 'w', encoding='utf-8') as file:
        file.write(string_to_save)
    if srtdocx == "True":
        with open(file_name.split('.')[0] + '.srt', 'w', encoding='utf-8') as file:
            file.write(string_to_save)
        srtdocument = Document()
        srtdocument.add_paragraph(string_to_save)
        srtdocument.save('SplitSRT.docx')

def split_srt_file(text, lang): #file_path):
    # Open the SRT file and read its contents
    #with open(file_path, 'r') as f:
    #    srt_contents = f.read()
    
    if lang == "en": nlp = spacy.load('en_core_web_sm')
    if lang == "ja": nlp = spacy.load('ja_core_news_sm')
    if lang == "ko": nlp = spacy.load('ko_core_news_sm')
    if lang == "zn-cn": nlp = spacy.load('zn_core_web_sm')

    srt_contents = text
    
    # Split the SRT file by timestamp
    srt_sections = srt_contents.split('\n\n')
    srt_sections_POSversion = []
    subaswordlist = ""

    # Loop through each section of the SRT file
    for i in range(len(srt_sections)):
        # Split the section into its timestamp and subtitle text
        section_lines = srt_sections[i].split('\n')
        timestamp = section_lines[1]
        subtitle_text = ' | '.join(section_lines[2:])
        sub_split_line = nlp(subtitle_text)
        subtitle_textPOSversion = ""
        subtitle_text = ""

        # Replace spaces in the subtitle text with " | "
        #subtitle_text = subtitle_text.replace(' ', ' | ')
        for token in sub_split_line:
            subtitle_text += token.text + " | "
            subaswordlist += token.text + " "
            subtitle_textPOSversion += token.pos_ + " | "

        # Reconstruct the section with the updated subtitle text
        srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}"
        srt_sections_POSversion.append(f"{section_lines[0]}\n{timestamp}\n{subtitle_textPOSversion[3:]}\n\n")

    SplitSRT = '\n\n'.join(srt_sections)
    SplitPOSsrt = ''.join(srt_sections_POSversion)
    save_string_to_file(SplitSRT, "SplitSRT.txt", "True")
    save_string_to_file(SplitPOSsrt, "SplitPOSsrt.txt", "False")
    subaswordlist = set(subaswordlist.split(" "))
    subaswordlistOutput = ""

    for word in subaswordlist:
        subaswordlistOutput += "\n | " + word

    subaswordlistOutput = str(len(subaswordlist)) + "\n" + subaswordlistOutput

    # Join the SRT sections back together into a single string
    return subaswordlistOutput, ["SplitSRT.docx", "SplitSRT.txt", "SplitSRT.srt", "SplitPOSsrt.txt"], SplitSRT, SplitPOSsrt

def find_string_positions(s, string):
    positions = []
    start = 0
    while True:
        position = s.find(string, start)
        if position == -1:
            break
        positions.append(position)
        start = position + len(string)
    return positions

def splittext(string):
    string_no_formaterror = string.replace(" -- > ", " --> ")
    split_positions = find_string_positions(string_no_formaterror, " --> ")  
    split_strings = []
    prepos = 0
    for pos in split_positions:
        pos -= 12
        split_strings.append((string[prepos:pos])) #, string[pos:]))
        prepos = pos
    
    FinalOutput = ""
    stoutput = ""
    linenumber = 1
    #print(linenumber)
    for item in split_strings[1:]:
        stoutput = item[0:29] + "\n" + item[30:]
        stspaces = find_string_positions(stoutput, " ")
        FinalOutput += str(linenumber) + "\n" + stoutput[:stspaces[-2]] + "\n"
        FinalOutput += "\n"
        linenumber += 1
    return FinalOutput[2:]   

def VideotoSegment(video_file, subtitle_file):
    # Read the subtitle file and extract the timings for each subtitle
    timings = []
    for line in subtitle_file:
        if '-->' in line:
            start, end = line.split('-->')
            start_time = start.strip().replace(',', '.')
            end_time = end.strip().replace(',', '.')
            timings.append((start_time, end_time))

    # Cut the video into segments based on the subtitle timings
    video_segments = []
    for i, (start_time, end_time) in enumerate(timings):
        output_file = f'segment_{i}.mp4'
        ffmpeg.input(video_file, ss=start_time, to=end_time).output(output_file, codec='copy').run()
        video_segments.append(output_file)

    # Convert each segment to an MP3 audio file using FFmpeg
    audio_segments = []
    for i in range(len(timings)):
        output_file = f'segment_{i}.mp3'
        ffmpeg.input(video_segments[i]).output(output_file, codec='libmp3lame', qscale='4').run()
        audio_segments.append(output_file)

    # Create a ZIP archive containing all of the segmented files
    zip_file = zipfile.ZipFile('segmented_files.zip', 'w')
    for segment in video_segments + audio_segments:
        zip_file.write(segment)
        os.remove(segment)
    zip_file.close()

    # Return the ZIP archive for download
    return 'segmented_files.zip'

def text_to_dropdown(text, id=None): #TextCompFormat
    lines = text.strip().split("\n")
    html = "<select"
    if id:
        html += f' id="{id}"'
    html += "> \n"
    for line in lines:
        html += f"    <option>{line}</option>\n"
    html += "</select> \n"
    return html

def text_to_links(text): #TextCompFormat
    lines = text.strip().split("\n")
    html = ""
    for line in lines:
        if line.startswith("http"):
            html += f"<a href='{line}'> --  -- </a> | "
        else:
            html += line + "Not a link <br> \n"
    return html

HTMLCompMode = gr.Dropdown(choices=["Dropdown", "Links"], value="Links")

def TextCompFormat(text, HTMLCompMode):
    FinalOutput = ""
    if HTMLCompMode == "Dropdown":
        FinalOutput = text_to_dropdown(text)
    if HTMLCompMode == "Links":
        FinalOutput = text_to_links(text)
    return FinalOutput

def create_collapsiblebutton(button_id, button_caption, div_content):
    button_html = f'<button id="{button_id}" class="accordionbtn">{button_caption}</button>'
    div_html = f'<div id="{button_id}Div" class="panel">\n{div_content}\n    </div>'
    return button_html + "\n    " + div_html

#---------------

def removeTonalMarks(string):
    tonalMarks = "āēīōūǖáéíóúǘǎěǐǒǔǚàèìòùǜɔɛ"
    nonTonalMarks = "aeiouuaeiouuaeiouuaeiouoe"
    noTonalMarksStr = ""
    for char in string:
        index = tonalMarks.find(char)
        if index != -1:
            noTonalMarksStr += nonTonalMarks[index]
        else:
            noTonalMarksStr += char
    return noTonalMarksStr


def add_text_to_image(input_image, text, output_image_path="output.png", border_size=2):
    text = removeTonalMarks(text)
    imagearr = np.asarray(input_image) #Image.open(input_image_path)
    width, height = imagearr.shape[:2] #width, height = image.size
    img = Image.fromarray(imagearr)
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("ShortBaby.ttf", 36) #ShortBaby-Mg2w.ttf
    text_width, text_height = draw.textbbox((0, 0), text, font=font)[2:] #draw.textsize(text, font)
    # calculate the x, y coordinates of the text box
    x = (width - text_width) / 2
    y = (height - text_height) / 2
    # put the text on the image with a border
    for dx, dy in [(0, 0), (border_size, border_size), (-border_size, -border_size), (border_size, -border_size), (-border_size, border_size)]:
        draw.text((x + dx, y + dy), text, font=font, fill=(255, 255, 255))
    draw.text((x, y), text, font=font, fill=(0, 0, 0))
    img.save(output_image_path, "PNG")
    return "output.png"

def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
      #Buttons and labels autocreation
    #Change this to spacy version so that data is from one library
    #Javascript videos on youtube - KodeBase - Change button color Onclick; bro code - button in 5 minutes
    #GPT3 helped guide the highlighting if statements

    FinalOutput = ""
    #sentence = "One Piece chapter 1049 spoilers  Thanks to Etenboby from WG forums  Chapter 1049: **\"The world we should aspire to\"**  * In the cover, someone burned Niji and Yonji\u2019s book * Kaido flashback time. We see his childhood in Vodka Kingdom, and where a few years later he met Whitebeard who told him that Rocks wants to meet him * In the present, part of Raizo\u2019s water leaves the castle and flame clouds disappear. But Momo makes a new one. * Luffy says he will create a world where none of his friends would starve, then he hits Kaido and Kaido falls to the ground of the flower capital. * In another flashback, Kaido tells King that Joy Boy will be the man that can defeat him.  **Additional info**   *Flashback to Kaidou as a kid*  *- His country tries to sell him to the marines but he escapes*  *- He rampages in Hachinosu(i think it's blackbeard's island) and Rocks invites him to his crew*  *- Young WB appears*  *- Rocks flashback suddenly ends*  *- Higurashi invites Kaidou*  *- The flashback ends with Kaidou telling King he knows who Joy Boy is.*   *Back to the present*  \\- *Denjirou hugs Hiyori*  \\- *Luffy's punch hits Kaidou*  *Flashback continues*  \\- *King asks: Who is it then?*  \\- *Kaidou: The one who will defeat me*  \\- *King: Then he will not appear*  \\- *Onigashima falls near the capital*  \\- *Momo falls*  **BREAK NEXT WEEK**  https://www.reddit.com/r/OnePiece/comments/umu2h0/one_piece_chapter_1049_spoilers/" #@param {type: "string"}
    HTMLMainbody = ""
    GradHTMLMainbody = "" #HTML in gradio components doesnt do css and js properly so nned to highlight

    doc = nlp(text)
    iIDNumber = 0
    iVerbCount = 0
    iNounCount = 0
    iWords = 0
    allverbs = ""
    allverbslist = ""
    allverbids = ""
    allverbidslist = ""

    for token in doc:
        if (token.pos_ == "VERB") or (token.pos_ == "AUX"):
            HTMLMainbody = HTMLMainbody + "<button id='btn" + str(iVerbCount) +  "' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
            GradHTMLMainbody = GradHTMLMainbody + "<button id='btn" + str(iVerbCount) +  "' style='background-color: green;' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
            allverbids = allverbids + str(iVerbCount) + " "
            iVerbCount += 1
            iWords += 1
            allverbs = allverbs + token.text + " "
        elif token.pos_ == "NOUN":
            HTMLMainbody = HTMLMainbody +  "<label class='Nouns' id='lbl" + token.text + "'>" + token.text + " </label> " 
            GradHTMLMainbody = GradHTMLMainbody +  "<label class='Nouns' id='lbl" + token.text + "' style='background-color: blue;'>" + token.text + " </label> "  
            iNounCount += 1
            iWords += 1  
        elif token.pos_ == "PUNCT":
            HTMLMainbody = HTMLMainbody + token.text
            GradHTMLMainbody = GradHTMLMainbody + token.text
        else:
            HTMLMainbody = HTMLMainbody + token.text + " "
            GradHTMLMainbody = GradHTMLMainbody + token.text + " "
            iWords += 1
        iIDNumber += 1 

    allverbslist = allverbs.split()
    allverbidslist = allverbids.split()

    FinalHTML = ""
    FinalGradHTML = ""
    FinalCSS = ""
    FinalJS = ""

    FinalCSS = FinalCSS + ''' <style>
    body {
    background-color: darksalmon;
    }
    
    .Nouns {
    color: red;
    }

    .clunknown{
    background-color: gainsboro;
    } 

    .clknownl1{
    background-color: yellow;
    }

    .clknownl2{
    background-color: gold;
    }

    .clknownl3{
    background-color: orange;
    }

    .PD1 {
    text-align: center;
    font-size: larger;
    font-family: cursive;
    }

    .PD2 {
    font-family: monospace;
    }
    </style>
    '''

    #style='background-color:Gainsboro; There is no general style attribute for buttons but you can make a class and put the style conditions

    iSents = 0
    for sent in doc.sents:
        iSents += 1

    FinalHTML += f"<html>\n  <head>\n    { FinalCSS } \n</head>\n  <body>\n  <div id='PD1'> \n    Picture on mouse hover = Visual<br> Speed = End Goal ==> App Timer Functions ||| \n    Sentences: " + str(iSents) + " | Words: " + str(iWords) + " | App elements: " + str(iNounCount + iVerbCount) + " | Verbs: " + str(iVerbCount) + "</div>"
    FinalHTML += "\n<div><hr><progress id='myVerbProgress' value='0' max='" + str(iVerbCount) + "'></progress></div>"
    FinalJS = FinalJS + '''\n
    <script> 
    function HighlightWord(Button){
    if (document.getElementById(Button).style.backgroundColor === 'orange') {
    document.getElementById(Button).style.backgroundColor=''  
    }
    else if (document.getElementById(Button).style.backgroundColor === 'gold') {
    document.getElementById(Button).style.backgroundColor='orange'  
    }
    else if (document.getElementById(Button).style.backgroundColor === 'yellow') {
    document.getElementById(Button).style.backgroundColor='gold'  
    } 
    else {document.getElementById(Button).style.backgroundColor='yellow'
    }
    OnlyUnknownVerbs()
    } 
    '''

    FinalGradHTML = FinalHTML + "\n<div><hr>\n" + GradHTMLMainbody + "\n" #HTML in gradio components doesnt do css and js properly so nned to highlight
    FinalHTML = FinalHTML + "\n<div><hr>\n" + HTMLMainbody + "\n"
    
    #FinalHTML = FinalHTML + '''</div><hr>
    #<button onclick=OnlyUnknownSentences() id="btnOnlyUnknownSentences">Only Unknown Sentences Put this function in a timer to keep up to date without input</button>
    #'''
    FinalJS = FinalJS + '''
    function OnlyUnknownVerbs(){
    AllButtons = ''' + str(allverbidslist) + '''   
    AllButtonsText = ''' + str(allverbslist) + ''' 
    UnknownOutput = ""
    iUnknownCount = 0
    AllButtons.forEach(function(item){  
    if (document.getElementById('btn'+item).style.backgroundColor === ''){
        UnknownOutput += AllButtonsText[item] + " " 
        iUnknownCount += 1
        } 
        document.getElementById('myVerbProgress').value = ''' + str(iVerbCount) + ''' - iUnknownCount
    })    
    document.getElementById('PD2').textContent = 'Only Unknwon words list: ' + UnknownOutput
    } 


    </script>
    </body> 
</html>
    '''

    FinalHTML = FinalHTML + '''<br><hr><br>
    <div id='PD2'> Only Unknown List</div>
    \n
    '''

    FinalGradHTML = FinalGradHTML + '''<br><hr><br>
    <div id='PD2'> Only Unknown List</div>
    \n
    '''

    FinalOutput = FinalHTML + FinalJS #FinalCSS + FinalJS
    FinalGradOutput = FinalGradHTML + FinalCSS + FinalJS


    HTMLDownloadTemp = f'UnknownVerbTrack.html' 

    with open(HTMLDownloadTemp, 'w') as f:
        f.write(FinalOutput)

    return HTMLDownloadTemp, FinalGradOutput, FinalOutput

#Kathryn Lingel - Pyambic Pentameter Example - PyCon US
#Basic Language Model Code
def build_model(source_text):
    list_of_words = source_text.split()
    model = {} #initialise model to empty dictionary

    for i, word in enumerate(list_of_words[:-1]): #every word except last word
      if not word in model: #If word not already in dictionary as a key we add it and initialise to empty array
        model[word] = [] 
      next_word = list_of_words[i+1] 
      model[word].append(next_word) #model = dictionary per word containing previously seen next words from ANY given text ==> even lyrics
    
    translatestring = str(model)
    translatestring = translatestring.replace("'", "")
    return model, translatestring

def markov_generate(source_text, num_words = 20):
    model = build_model(source_text)
    seed = random.choice(list(model.keys())) #Randomly pick a word ==> Heading of the dictionary are keys aka the words
    output = [seed] #output initialisation using random word
    for i in range(num_words):
      last_word = output[-1] #of the output list
      next_word = random.choice(model[last_word]) # next word to the above word 
      output.append(next_word) #new last word in the output list
      if next_word not in model:
        break

    return ' '.join(output) #New list into a string aka (hopefully) sentence
# print(markov_generate("I am the egg man they are the egg men I am the wallrus goo goo g' joob"))

def chunk_srt_text(srt_text, chunk_size):
    # Split the SRT text into chunks of the specified size
    ChunkList = textwrap.wrap(srt_text, chunk_size)
    dfFinalOutput = pd.DataFrame(ChunkList, columns = [f"Chunks - { len(ChunkList) }"])
    return dfFinalOutput, ""

#-------------------------------------------------------------------------------------------------------------------------------
#Clean Merge

def split_into_fours(text):
    lines = text.split('\n')
    chunks = [lines[i:i+4] for i in range(0, len(lines), 4)]
    return chunks

def NumberLineSort(listlen):
  numbers = list(range(0, listlen))  # create a list of numbers 1 to 12
  grouped_numbers = []
  for i in range(4):
      group = [numbers[j] for j in range(i, len(numbers), 4)]
      grouped_numbers.append(group)
  return grouped_numbers

def SRTLineSort(text):
  chunks = split_into_fours(text)
  NumberofBlocks = len(chunks) / 4
  printnumber = NumberLineSort(len(chunks))
  SRTLinenumber = []
  SRTTiming = []
  SRTContent = []
  FinalOutput = ""

  for i in range(0, 3):
    for item in printnumber[i]:
      if i == 0: SRTLinenumber.append(chunks[item][0])
      if i == 1: SRTTiming.append(chunks[item][0])
      if i == 2: SRTContent.append(chunks[item])

  for i in range(0, int(NumberofBlocks)):
    FinalOutput += SRTLinenumber[i] + "\n"
    FinalOutput += SRTTiming[i] + "\n"
    for i2 in range(0, 4):
      FinalOutput += SRTContent[i][i2] + "\n"
    FinalOutput += "\n"

  return FinalOutput  

#--------------------------------------------------------------------------------------------------------------------------------

RandomiseTextType = gr.Dropdown(choices=["Words", "Words5x", "Sentences", "Paragraph", "Page"], value="Words")

def RandomiseTextbyType(Text, Choice):
    FinalOutput = ""
    TempWords = []

    if Choice == "Words" : 
        TempWords = Text.split()
        FinalOutput = reading_randomize_words(TempWords)
    if Choice == "Words5x" : 
        TempWords = Text.split()
        FinalOutput = reading_randomize_words5x(TempWords)
    if Choice == "Sentences" : FinalOutput = reading_randomize_words_in_sentence(Text)
    if Choice == "Paragraph" : FinalOutput = reading_randomize_words_in_paragraph(Text)
    if Choice == "Page" : FinalOutput = "Still under Construction"

    return FinalOutput

def reading_randomize_words5x(word):
    wordScram = ""
    for item in word:
      for i in range(5):
          item = ''.join(random.sample(item, len(item)))
          wordScram += " " + item
          #print(item)
      wordScram += "\n"
    return wordScram

def reading_randomize_words(word):
    wordScram = ""
    for item in word:
        item = ''.join(random.sample(item, len(item)))
        wordScram += item + " "
    return wordScram

def reading_randomize_words_in_sentence(text):
    FinalOutput = ""
    sentences = text.split(".")
    for sentence in sentences:
        words = sentence.split()
        random.shuffle(words)
        FinalOutput += ' '.join(words) + ". "
    return FinalOutput

def reading_randomize_words_in_paragraph(paragraph):
    sentences = paragraph.split(".")
    random.shuffle(sentences)
    return '. '.join(sentences)

def changeexposuretext(text):
    return f"<marquee> {text} </marquee>"

#-------------------------------------------------------------------------------------------------------------------------------

def ImageTranslationTest(video, subtitle):
    #Inputs from file Returns a <tempfile._TemporaryFileWrapper object at ___> so the path is item.name

    if subtitle is None:
        return video.name

    return [video.name, subtitle.name]

#------------------------------------------------------------------------------------------------------------------------------

def AutoSyllablePractice(String):
    FinalOutput = ""

    stringlen = len(String)

    vowels =["a", "e", "i", "o", "y"]
    VowelSyllables = []
    allvowels = ""

    for i in vowels:
        if i in String:
            allvowels = allvowels + " " + String.replace(i, i + " ")
            allvowels = allvowels + " " + String.replace(i, " " + i)
    VowelSyllables = allvowels.split(" ")

    VowelSyllablesstr = ""

    for item in VowelSyllables:
        VowelSyllablesstr += item + ", "

    FinalOutput += VowelSyllablesstr        
    return FinalOutput

def GuidedReading(textspreprocess,seperator):
  FinalOutput = ""
  
  if seperator == "Sentences": 
    textspreprocess = textspreprocess.split(".")
    FinalOutput = ""
  elif seperator == "lines":
      textspreprocess = textspreprocess.splitlines()
  else: textspreprocess = textspreprocess.split(seperator)

  # Load language-specific models
  nlp_en = spacy.load("en_core_web_sm")
  nlp_de = spacy.load("de_core_news_sm")
  nlp_es = spacy.load("es_core_news_sm")
  nlp_ko = spacy.load("ko_core_news_sm")
  nlp_ja = spacy.load("ja_core_news_sm")
  nlp_zh = spacy.load("zh_core_web_sm")

  # Create a dictionary of language codes and models
  nlp_dict = {"en": nlp_en, "de": nlp_de, "es": nlp_es, "ko": nlp_ko, "ja": nlp_ja, "zh-cn": nlp_zh}

  # Define a function to POS tag and transliterate a text given its language code
  def pos_tag_and_transliterate(text, lang):
      # Get the model for the language
      nlp = nlp_dict.get(lang)
      if nlp is None:
          return None # No model found for the language
      # Process the text and get a list of (token, tag) tuples
      doc = nlp(text)
      original_pos_tags = [(token.text, token.pos_) for token in doc]
      # Use different libraries for different languages
      if lang == "ja":
          # Use pykakasi for Japanese
          from pykakasi import kakasi
          # Set the modes using properties
          k = kakasi()
          k.hira2a = True # Hiragana to ascii
          k.kata2a = True # Katakana to ascii
          k.kanji2a = True # Kanji to ascii
          k.roman = "Hepburn" # Use Hepburn romanization
          #words = re.findall(r"\S+|\s+", text)
          words = [token.text for token in doc]
          # Create a dictionary that maps each original word to its transliterated form with spaces
          translit_dict = {word: k.convert(word)[0]['hepburn'] for word in words}
          # Get the transliterated text with spaces
          transliterated = " ".join(translit_dict.values())
          # Replace the words in the original POS tag list with their transliterated forms
          translit_pos_tags = [(translit_dict.get(word, word), tag) for word, tag in original_pos_tags]
          # Get the transliterated language code
          lang_translit = lang + "-translit"
      elif lang == "ko":
          # Use hangul-romanize for Korean
          from hangul_romanize import Transliter
          from hangul_romanize.rule import academic
          transliter = Transliter(academic)
          # Create a dictionary that maps each original word to its transliterated form with spaces
          words = [token.text for token in doc]
          translit_dict = {word: " ".join(transliter.translit(word)) for word in words}
          # Get the transliterated text with spaces
          transliterated = " ".join(translit_dict.values())
          # Replace the words in the original POS tag list with their transliterated forms
          translit_pos_tags = [(translit_dict.get(word, word), tag) for word, tag in original_pos_tags]
          # Get the transliterated language code
          lang_translit = lang + "-translit"
      elif lang == "zh-cn":
          # Use pinyin for Chinese
          from pinyin import get
          # Get the transliterated text without spaces
          transliterated = get(text)
          # Replace the words in the original POS tag list with their transliterated forms
          translit_pos_tags = [(get(word), tag) for word, tag in original_pos_tags]
          # Get the transliterated language code
          lang_translit = lang + "-translit"
      else:
          # No transliteration needed for other languages
          return (text, original_pos_tags, text, original_pos_tags, lang)
      # Return a tuple of the original text, the original POS tags, the transliterated text, the transliterated POS tags, and the transliterated language code
      return (text, original_pos_tags, transliterated, translit_pos_tags, lang_translit)

  # Create an empty list to store the results
  texts = []

  # Loop through each text in the list
  for text in textspreprocess:
      # Detect the language of the text
      lang = detect(text)
      # Add the text and the language as a tuple to the results list
      texts.append((text, lang))

  # Process each text in the texts list and print the results
  for text, lang in texts:
      result = pos_tag_and_transliterate(text, lang)
      if result is not None:
        FinalOutput += f"\nLanguage: {lang}"
        FinalOutput += f"\nText: {result[0]}"
        if lang in ["ja", "ko", "zh-cn"]:
            FinalOutput += f"\nTransliterated Text: {result[2]}"
        FinalOutput += f"\n POS tags: {result[1]}"
        if lang in ["ja", "ko", "zh-cn"]:
            FinalOutput += f"\nTPOS tags: {result[3]}"
        FinalOutput += f"\n"
  
  return FinalOutput


def create_acronym_map(text):
    """Create an acronym map from the provided text."""
    lines = text.split('\n')
    acronym_map = {}
    allacronyms = ""
    
    for line in lines:
        # Remove any special characters and split by whitespace
        words = line.split()
        acronym = ''.join([word[0].upper() for word in words if word])
        if acronym:  # Avoid adding empty lines
            acronym_map[line] = acronym
            allacronyms += acronym + " | "
            
    return acronym_map, allacronyms

def onlyplurals(Inputtext): #NLP or Simple Suffix check
    doc = nlp(Inputtext)
    Pluralwords = ""
    for token in doc:
        if token.tag_ == "NNS" or token.tag_ == "NNPS":
            Pluralwords = Pluralwords + token.text + " "
    TextToks = Pluralwords.split(' ')
    PluralCounts = Counter(elem for elem in TextToks)        
    return Pluralwords, PluralCounts

def LoadNLTKUDHRText(text):    
    NLTKtext = nltk.corpus.udhr.raw(text)
    CountNLTKText = Counter(NLTKtext.split()).most_common(100)

    return CountNLTKText, NLTKtext

NLTKudhr = gr.Dropdown(choices=['English-Latin1', 'Akuapem_Twi-UTF8', 'Zulu-Latin1', 'Afrikaans-Latin1', 'German_Deutsch-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Spanish-Latin1', 'Korean_Hankuko-UTF8', 'Chinese_Mandarin-GB2312', 'Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1', 'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1', 'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', 'Amarakaeri-Latin1', 'Amuesha-Yanesha-UTF8', 'Arabela-Latin1', 'Arabic_Alarabia-Arabic', 'Asante-UTF8', 'Ashaninca-Latin1', 'Asheninca-Latin1', 'Asturian_Bable-Latin1', 'Aymara-Latin1', 'Balinese-Latin1', 'Bambara-UTF8', 'Baoule-UTF8', 'Basque_Euskara-Latin1', 'Batonu_Bariba-UTF8', 'Belorus_Belaruski-Cyrillic', 'Belorus_Belaruski-UTF8', 'Bemba-Latin1', 'Bengali-UTF8', 'Beti-UTF8', 'Bichelamar-Latin1', 'Bikol_Bicolano-Latin1', 'Bora-Latin1', 'Bosnian_Bosanski-Cyrillic', 'Bosnian_Bosanski-Latin2', 'Bosnian_Bosanski-UTF8', 'Breton-Latin1', 'Bugisnese-Latin1', 'Bulgarian_Balgarski-Cyrillic', 'Bulgarian_Balgarski-UTF8', 'Cakchiquel-Latin1', 'Campa_Pajonalino-Latin1', 'Candoshi-Shapra-Latin1', 'Caquinte-Latin1', 'Cashibo-Cacataibo-Latin1', 'Cashinahua-Latin1', 'Catalan-Latin1', 'Catalan_Catala-Latin1', 'Cebuano-Latin1', 'Chamorro-Latin1', 'Chayahuita-Latin1', 'Chechewa_Nyanja-Latin1', 'Chickasaw-Latin1', 'Chinanteco-Ajitlan-Latin1', 'Chinanteco-UTF8', 'Chinese_Mandarin-GB2312', 'Chuuk_Trukese-Latin1', 'Cokwe-Latin1', 'Corsican-Latin1', 'Croatian_Hrvatski-Latin2', 'Czech-Latin2', 'Czech-UTF8', 'Czech_Cesky-Latin2', 'Czech_Cesky-UTF8', 'Dagaare-UTF8', 'Dagbani-UTF8', 'Dangme-UTF8', 'Danish_Dansk-Latin1', 'Dendi-UTF8', 'Ditammari-UTF8', 'Dutch_Nederlands-Latin1', 'Edo-Latin1', 'English-Latin1', 'Esperanto-UTF8', 'Estonian_Eesti-Latin1', 'Ewe_Eve-UTF8', 'Fante-UTF8', 'Faroese-Latin1', 'Farsi_Persian-UTF8', 'Farsi_Persian-v2-UTF8', 'Fijian-Latin1', 'Filipino_Tagalog-Latin1', 'Finnish_Suomi-Latin1', 'Fon-UTF8', 'French_Francais-Latin1', 'Frisian-Latin1', 'Friulian_Friulano-Latin1', 'Ga-UTF8', 'Gagauz_Gagauzi-UTF8', 'Galician_Galego-Latin1', 'Garifuna_Garifuna-Latin1', 'German_Deutsch-Latin1', 'Gonja-UTF8', 'Greek_Ellinika-Greek', 'Greek_Ellinika-UTF8', 'Greenlandic_Inuktikut-Latin1', 'Guarani-Latin1', 'Guen_Mina-UTF8', 'HaitianCreole_Kreyol-Latin1', 'HaitianCreole_Popular-Latin1', 'Hani-Latin1', 'Hausa_Haoussa-Latin1', 'Hawaiian-UTF8', 'Hebrew_Ivrit-Hebrew', 'Hebrew_Ivrit-UTF8', 'Hiligaynon-Latin1', 'Hindi-UTF8', 'Hindi_web-UTF8', 'Hmong_Miao-Sichuan-Guizhou-Yunnan-Latin1', 'Hmong_Miao-SouthernEast-Guizhou-Latin1', 'Hmong_Miao_Northern-East-Guizhou-Latin1', 'Hrvatski_Croatian-Latin2', 'Huasteco-Latin1', 'Huitoto_Murui-Latin1', 'Hungarian_Magyar-Latin1', 'Hungarian_Magyar-Latin2', 'Hungarian_Magyar-UTF8', 'Ibibio_Efik-Latin1', 'Icelandic_Yslenska-Latin1', 'Ido-Latin1', 'Igbo-UTF8', 'Iloko_Ilocano-Latin1', 'Indonesian-Latin1', 'Interlingua-Latin1', 'Inuktikut_Greenlandic-Latin1', 'IrishGaelic_Gaeilge-Latin1', 'Italian-Latin1', 'Italian_Italiano-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Javanese-Latin1', 'Jola-Fogny_Diola-UTF8', 'Kabye-UTF8', 'Kannada-UTF8', 'Kaonde-Latin1', 'Kapampangan-Latin1', 'Kasem-UTF8', 'Kazakh-Cyrillic', 'Kazakh-UTF8', 'Kiche_Quiche-Latin1', 'Kicongo-Latin1', 'Kimbundu_Mbundu-Latin1', 'Kinyamwezi_Nyamwezi-Latin1', 'Kinyarwanda-Latin1', 'Kituba-Latin1', 'Korean_Hankuko-UTF8', 'Kpelewo-UTF8', 'Krio-UTF8', 'Kurdish-UTF8', 'Lamnso_Lam-nso-UTF8', 'Latin_Latina-Latin1', 'Latin_Latina-v2-Latin1', 'Latvian-Latin1', 'Limba-UTF8', 'Lingala-Latin1', 'Lithuanian_Lietuviskai-Baltic', 'Lozi-Latin1', 'Luba-Kasai_Tshiluba-Latin1', 'Luganda_Ganda-Latin1', 'Lunda_Chokwe-lunda-Latin1', 'Luvale-Latin1', 'Luxembourgish_Letzebuergeusch-Latin1', 'Macedonian-UTF8', 'Madurese-Latin1', 'Makonde-Latin1', 'Malagasy-Latin1', 'Malay_BahasaMelayu-Latin1', 'Maltese-UTF8', 'Mam-Latin1', 'Maninka-UTF8', 'Maori-Latin1', 'Mapudungun_Mapuzgun-Latin1', 'Mapudungun_Mapuzgun-UTF8', 'Marshallese-Latin1', 'Matses-Latin1', 'Mayan_Yucateco-Latin1', 'Mazahua_Jnatrjo-UTF8', 'Mazateco-Latin1', 'Mende-UTF8', 'Mikmaq_Micmac-Mikmaq-Latin1', 'Minangkabau-Latin1', 'Miskito_Miskito-Latin1', 'Mixteco-Latin1', 'Mongolian_Khalkha-Cyrillic', 'Mongolian_Khalkha-UTF8', 'Moore_More-UTF8', 'Nahuatl-Latin1', 'Ndebele-Latin1', 'Nepali-UTF8', 'Ngangela_Nyemba-Latin1', 'NigerianPidginEnglish-Latin1', 'Nomatsiguenga-Latin1', 'NorthernSotho_Pedi-Sepedi-Latin1', 'Norwegian-Latin1', 'Norwegian_Norsk-Bokmal-Latin1', 'Norwegian_Norsk-Nynorsk-Latin1', 'Nyanja_Chechewa-Latin1', 'Nyanja_Chinyanja-Latin1', 'Nzema-UTF8', 'OccitanAuvergnat-Latin1', 'OccitanLanguedocien-Latin1', 'Oromiffa_AfaanOromo-Latin1', 'Osetin_Ossetian-UTF8', 'Oshiwambo_Ndonga-Latin1', 'Otomi_Nahnu-Latin1', 'Paez-Latin1', 'Palauan-Latin1', 'Peuhl-UTF8', 'Picard-Latin1', 'Pipil-Latin1', 'Polish-Latin2', 'Polish_Polski-Latin2', 'Ponapean-Latin1', 'Portuguese_Portugues-Latin1', 'Pulaar-UTF8', 'Punjabi_Panjabi-UTF8', 'Purhepecha-UTF8', 'Qechi_Kekchi-Latin1', 'Quechua-Latin1', 'Quichua-Latin1', 'Rarotongan_MaoriCookIslands-Latin1', 'Rhaeto-Romance_Rumantsch-Latin1', 'Romani-Latin1', 'Romani-UTF8', 'Romanian-Latin2', 'Romanian_Romana-Latin2', 'Rukonzo_Konjo-Latin1', 'Rundi_Kirundi-Latin1', 'Runyankore-rukiga_Nkore-kiga-Latin1', 'Russian-Cyrillic', 'Russian-UTF8', 'Russian_Russky-Cyrillic', 'Russian_Russky-UTF8', 'Sami_Lappish-UTF8', 'Sammarinese-Latin1', 'Samoan-Latin1', 'Sango_Sangho-Latin1', 'Sanskrit-UTF8', 'Saraiki-UTF8', 'Sardinian-Latin1', 'ScottishGaelic_GaidhligAlbanach-Latin1', 'Seereer-UTF8', 'Serbian_Srpski-Cyrillic', 'Serbian_Srpski-Latin2', 'Serbian_Srpski-UTF8', 'Sharanahua-Latin1', 'Shipibo-Conibo-Latin1', 'Shona-Latin1', 'Sinhala-UTF8', 'Siswati-Latin1', 'Slovak-Latin2', 'Slovak_Slovencina-Latin2', 'Slovenian_Slovenscina-Latin2', 'SolomonsPidgin_Pijin-Latin1', 'Somali-Latin1', 'Soninke_Soninkanxaane-UTF8', 'Sorbian-Latin2', 'SouthernSotho_Sotho-Sesotho-Sutu-Sesutu-Latin1', 'Spanish-Latin1', 'Spanish_Espanol-Latin1', 'Sukuma-Latin1', 'Sundanese-Latin1', 'Sussu_Soussou-Sosso-Soso-Susu-UTF8', 'Swaheli-Latin1', 'Swahili_Kiswahili-Latin1', 'Swedish_Svenska-Latin1', 'Tahitian-UTF8', 'Tenek_Huasteco-Latin1', 'Tetum-Latin1', 'Themne_Temne-UTF8', 'Tiv-Latin1', 'Toba-UTF8', 'Tojol-abal-Latin1', 'TokPisin-Latin1', 'Tonga-Latin1', 'Tongan_Tonga-Latin1', 'Totonaco-Latin1', 'Trukese_Chuuk-Latin1', 'Turkish_Turkce-Turkish', 'Turkish_Turkce-UTF8', 'Tzeltal-Latin1', 'Tzotzil-Latin1', 'Uighur_Uyghur-Latin1', 'Uighur_Uyghur-UTF8', 'Ukrainian-Cyrillic', 'Ukrainian-UTF8', 'Umbundu-Latin1', 'Urarina-Latin1', 'Uzbek-Latin1', 'Vietnamese-ALRN-UTF8', 'Vietnamese-UTF8', 'Vlach-Latin1', 'Walloon_Wallon-Latin1', 'Wama-UTF8', 'Waray-Latin1', 'Wayuu-Latin1', 'Welsh_Cymraeg-Latin1', 'WesternSotho_Tswana-Setswana-Latin1', 'Wolof-Latin1', 'Xhosa-Latin1', 'Yagua-Latin1', 'Yao-Latin1', 'Yapese-Latin1', 'Yoruba-UTF8', 'Zapoteco-Latin1', 'Zapoteco-SanLucasQuiavini-Latin1', 'Zhuang-Latin1', 'Zulu-Latin1'], label="Choose one the below languages", value='English-Latin1')

def SimultaneousSpellingPrac(text):
    TextToks = text.split()
    FinalOutput = "For Sentences wrap in another function that calls function per sentences (Spacy) \n"

    iLongestWord = 0
    for tok in TextToks:
        if len(tok) > iLongestWord: iLongestWord = len(tok)

    Equaltok = ""
    for tok in TextToks:
        Equaltok = Equaltok + tok.ljust(iLongestWord, '0') + " " #https://stackoverflow.com/questions/23216512/python-make-string-equal-length

    SimulList = []
    for i in range(0, iLongestWord):
        for tok in Equaltok.split():
            SimulList.append(tok[i])
    
    iWordSpaces = 0
    ZerosFinalOutput = ""

    for item in SimulList:
        iWordSpaces += 1
        ZerosFinalOutput = ZerosFinalOutput + item
        if iWordSpaces == len(TextToks):
          ZerosFinalOutput = ZerosFinalOutput + " "
          iWordSpaces = 0

    FinalOutput = FinalOutput + ZerosFinalOutput + " \n\n" + ZerosFinalOutput.replace("0", "") + " \n\n" + str(iLongestWord)
    return FinalOutput

def FirstLetterSummary(Text):
    TextToks = Text.split(" ")
    FinalOutput = ''
    for tok in TextToks:
        FinalOutput = FinalOutput + tok[0] + " "
    
    WordSuggestLetters = FinalOutput.replace(" ","")
    WordSuggestToks = [(WordSuggestLetters[i:i+5]) for i in range(0, len(WordSuggestLetters), 5)]
    WordsSuggest = ""

    for text in WordSuggestToks:
        WordsSuggest = WordsSuggest + " " + text 

    return FinalOutput, WordsSuggest

#-------

def imagebasedreading(inputtext):
    # Read the user input text file
    #with open("inputtext.txt", "r", encoding="utf-8") as file:
    #    inputtext = file.read()

    inputtextlines = inputtext.splitlines()

    htmlpart1 = """
    <!DOCTYPE html>
    <html>
        <head>
            <title>Image Placeholder with Text Background</title>
            <style>
                .grid-container {
                    display: grid;
                    grid-template-columns: repeat(4, 1fr);
                    gap: 16px;
                }
                .image-container {
                    width: 300px;
                    height: 300px;
                    margin: 10px;
                    border: 1px solid black;
                }
                img {
                    width: 100%;
                    height: 100%;
                }
            </style>
        </head>
        <body>
            <button onclick="saveState()">Save State</button>
            <button onclick="saveFilePaths()">Save File Paths</button>
            <input type="file" id="loadStateFile" onchange="loadState(event)">
            <button onclick="updateCounter()">Update Counter</button>
            <label id="counterLabel">0 / """ + str(len(inputtextlines)) + """ images complete</label>
            <div class="grid-container">
    """
            
    htmlpart2 = """
            </div>
            
        <script>
            
    function clearState() {
        const imageContainers = document.querySelectorAll(".image-container img");
        imageContainers.forEach((img) => {
            img.src = "";
        });
    }

            
            let filePaths = {};

            function loadImage(idx) {
                const fileInput = document.getElementById("fileInput" + idx);
                const image = document.getElementById("image" + idx);
                const file = fileInput.files[0];
                const reader = new FileReader();
                
                reader.addEventListener("load", function () {
                    image.src = reader.result;
                    filePaths["image" + idx] = file.name;
                    updateCounter();
                }, false);
                
                if (file) {
                    reader.readAsDataURL(file);
                }
            }

            function saveState() {
                let state = {};
                const imageContainers = document.querySelectorAll(".image-container img");
                imageContainers.forEach((img, idx) => {
                    if (img.src && img.src !== window.location.href) {
                        state["image" + idx] = img.src;
                    }
                });
                
                const blob = new Blob([JSON.stringify(state)], { type: 'text/plain' });
                const a = document.createElement('a');
                a.href = URL.createObjectURL(blob);
                a.download = 'image_state.txt';
                a.click();
            }

            function saveFilePaths() {
                const blob = new Blob([JSON.stringify(filePaths)], { type: 'text/plain' });
                const a = document.createElement('a');
                a.href = URL.createObjectURL(blob);
                a.download = 'file_paths.txt';
                a.click();
            }

            function loadState(event) {
                clearState(); // Clear existing state

                const file = event.target.files[0];
                if (file) {
                    const reader = new FileReader();
                    reader.onload = function(e) {
                        const state = JSON.parse(e.target.result);
                        for (const [key, value] of Object.entries(state)) {
                            const image = document.getElementById(key);
                            if (image) {
                                image.src = value;
                            }
                        }
                    };
                    reader.readAsText(file);
                }
            }

            function updateCounter() {
                const totalPlaceholders = document.querySelectorAll(".image-container").length;
                let loadedImages = 0;
                
                const imageContainers = document.querySelectorAll(".image-container img");
                imageContainers.forEach((img) => {
                    if (img.src && img.src !== window.location.href) {
                        loadedImages += 1;
                    }
                });
                
                document.getElementById("counterLabel").innerText = loadedImages + " / " + totalPlaceholders + " images complete";
            }
        </script>
        
        </body>
    </html>    
    """

    #If you have a gpu and imagepipeline then src in img tag = filepath of generate image
    def generate_html(textlines): 
        num_containers = len(textlines) 
        html_string = ""
        for i in range(num_containers):
            container = f'''
            <div class="image-container">
                <input type="file" id="fileInput{i}" onchange="loadImage({i})">
                <img id="image{i}" src="" alt="{textlines[i]} - Placeholder {i + 1}" onerror="this.style.background = 'grey url(data:image/svg+xml;utf8,&lt;svg xmlns=\'http://www.w3.org/2000/svg\' viewBox=\'0 0 100 100\'&gt;&lt;text y=\'.9em\' font-size=\'90\'&gt;Placeholder {i + 1}&lt;/text&gt;&lt;/svg&gt;) no-repeat center; this.style.border = \'1px solid black\';">
            </div>
            '''
            html_string += container
        return html_string

    # Generate the HTML based on the number of lines
    output_html = htmlpart1 + "\n" + generate_html(inputtextlines) + "\n" + htmlpart2
        
    # Save the generated HTML
    now = datetime.datetime.now()
    filename = f"ImagePlaceholder{now.strftime('%Y-%m-%d_%H-%M')}_{inputtext[:16]}.html"
    with open(filename, "w", encoding="utf-8") as file:
        file.write(output_html)

    return filename, output_html, output_html


def imagebasedreadingwordlevel(inputtext):
    # Read the user input text file
    #with open("inputtext.txt", "r", encoding="utf-8") as file:
    #    inputtext = file.read()

    inputtextlines = inputtext.split(" ")

    htmlpart1 = """
    <!DOCTYPE html>
    <html>
        <head>
            <title>Image Placeholder with Text Background</title>
            <style>
                .grid-container {
                    display: grid;
                    grid-template-columns: repeat(4, 1fr);
                    gap: 16px;
                }
                .image-container {
                    width: 300px;
                    height: 300px;
                    margin: 10px;
                    border: 1px solid black;
                }
                img {
                    width: 100%;
                    height: 100%;
                }
            </style>
        </head>
        <body>
            <button onclick="saveState()">Save State</button>
            <button onclick="saveFilePaths()">Save File Paths</button>
            <input type="file" id="loadStateFile" onchange="loadState(event)">
            <button onclick="updateCounter()">Update Counter</button>
            <label id="counterLabel">0 / """ + str(len(inputtextlines)) + """ images complete</label>
            <div class="grid-container">
    """
            
    htmlpart2 = """
            </div>
            
        <script>
            
    function clearState() {
        const imageContainers = document.querySelectorAll(".image-container img");
        imageContainers.forEach((img) => {
            img.src = "";
        });
    }

            
            let filePaths = {};

            function loadImage(idx) {
                const fileInput = document.getElementById("fileInput" + idx);
                const image = document.getElementById("image" + idx);
                const file = fileInput.files[0];
                const reader = new FileReader();
                
                reader.addEventListener("load", function () {
                    image.src = reader.result;
                    filePaths["image" + idx] = file.name;
                    updateCounter();
                }, false);
                
                if (file) {
                    reader.readAsDataURL(file);
                }
            }

            function saveState() {
                let state = {};
                const imageContainers = document.querySelectorAll(".image-container img");
                imageContainers.forEach((img, idx) => {
                    if (img.src && img.src !== window.location.href) {
                        state["image" + idx] = img.src;
                    }
                });
                
                const blob = new Blob([JSON.stringify(state)], { type: 'text/plain' });
                const a = document.createElement('a');
                a.href = URL.createObjectURL(blob);
                a.download = 'image_state.txt';
                a.click();
            }

            function saveFilePaths() {
                const blob = new Blob([JSON.stringify(filePaths)], { type: 'text/plain' });
                const a = document.createElement('a');
                a.href = URL.createObjectURL(blob);
                a.download = 'file_paths.txt';
                a.click();
            }

            function loadState(event) {
                clearState(); // Clear existing state

                const file = event.target.files[0];
                if (file) {
                    const reader = new FileReader();
                    reader.onload = function(e) {
                        const state = JSON.parse(e.target.result);
                        for (const [key, value] of Object.entries(state)) {
                            const image = document.getElementById(key);
                            if (image) {
                                image.src = value;
                            }
                        }
                    };
                    reader.readAsText(file);
                }
            }

            function updateCounter() {
                const totalPlaceholders = document.querySelectorAll(".image-container").length;
                let loadedImages = 0;
                
                const imageContainers = document.querySelectorAll(".image-container img");
                imageContainers.forEach((img) => {
                    if (img.src && img.src !== window.location.href) {
                        loadedImages += 1;
                    }
                });
                
                document.getElementById("counterLabel").innerText = loadedImages + " / " + totalPlaceholders + " images complete";
            }
        </script>
        
        </body>
    </html>    
    """

    #If you have a gpu and imagepipeline then src in img tag = filepath of generate image
    def generate_html(textlines): 
        num_containers = len(textlines) 
        html_string = ""
        for i in range(num_containers):
            container = f'''
            <div class="image-container">
                <input type="file" id="fileInput{i}" onchange="loadImage({i})">
                <img id="image{i}" src="" alt="{textlines[i]} - Placeholder {i + 1}" onerror="this.style.background = 'grey url(data:image/svg+xml;utf8,&lt;svg xmlns=\'http://www.w3.org/2000/svg\' viewBox=\'0 0 100 100\'&gt;&lt;text y=\'.9em\' font-size=\'90\'&gt;Placeholder {i + 1}&lt;/text&gt;&lt;/svg&gt;) no-repeat center; this.style.border = \'1px solid black\';">
            </div>
            '''
            html_string += container
        return html_string

    # Generate the HTML based on the number of lines
    output_html = htmlpart1 + "\n" + generate_html(inputtextlines) + "\n" + htmlpart2
        
    # Save the generated HTML
    now = datetime.datetime.now()
    filename = f"ImagePlaceholderwordlevel{now.strftime('%Y-%m-%d_%H-%M')}_{inputtext[:16]}.html"
    with open(filename, "w", encoding="utf-8") as file:
        file.write(output_html)

    return filename, output_html, output_html
#--------

guidedreadingseperator = gr.Dropdown(choices=[".", ",", "lines", "Sentences"], value=".", interactive=True)
textspreprocess = [
    ["Bing created this example \nApple is looking at buying U.K. startup for $1 billion \nApple schaut sich für 1 Milliarde Dollar ein Startup aus Großbritannien an \nApple está mirando comprar una startup del Reino Unido por mil millones de dólares \n애플은 영국의 스타트업을 10억 달러에 사려고 한다 \nアップルは、英国のスタートアップを10億ドルで買収する予定だ \n苹果正考虑以10亿美元收购英国初创公司", "\n"],
    ["This is an english sentence. This is the second english sentence", "."],
  ]

LLPromptIdeas = """

Lets try this I will give you the english word and you find the <<chinese>> word and then mix the meaning of the word with the mnemonic

Bings Explanation
Youre welcome. Im happy to help. If I wanted to explain the rules of this game clearly and concisely, I would do something like this:

The game is about finding the <<Chinese>> word for an English word and making a mnemonic that mixes the meaning of the word with the mnemonic.
The game has two players: one who gives the English word and one who finds the <<Chinese>> word and makes the mnemonic.
The player who gives the English word can choose any word they want, as long as it has a <<Chinese>> equivalent.
The player who finds the <<Chinese>> word and makes the mnemonic can use any online or offline resources they want, such as dictionaries, translators, or search engines.
The player who finds the <<Chinese>> word and makes the mnemonic should write their answer in the format: The <<Chinese>> word for X is Y <<(pinyin)>>, which means Z. Here are some possible mnemonics that mix the meaning of the word with the mnemonic: A, B, C, D. </p>

<hr>

Try make sepreate sentences with this acronym as the best wordplay expert in the world - SI(AGM, KPHSIO, ACFJG, DYNAGJ, JBMNNA, HNPDM, BSED, WUENN |

<hr>

Make jokes while following rules for a syllogism jokes game:

The game can be played with any number of people.
One person starts by stating a syllogism, which is a logical argument that consists of three parts: a major premise, a minor premise, and a conclusion.
The next person must then state a syllogism that has the same conclusion as the first syllogism, but with different major and minor premises.
The game continues in this way until someone cannot think of a new syllogism.
The person who makes the last valid syllogism wins the game. </p> 

<hr>

Do you know pydot?
Please create code for a class diagragm using the pydot library in python for the following topic/entity 

<hr>

(System/First request) Your job is to lengthen Text sent to you in a meaningful way. You must create 20 paragraphs for each Text line sent by the user
(User) Text: I went to the beach


<hr>

replace as many words with emojis in the sentence Life is very sweet <br>
next sentence is AI Town is a virtual town where AI characters live, chat and socialize.

<hr>

<p> </p>

"""

LLPromptIdeasasbtns = LLPromptIdeas.split("<hr>")

def display_website(link):
  html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
  gr.Info("If 404 then the space/page has probably been disabled - normally due to a better alternative")
  return html

def RepititionPracticeTimeCalculator(text, reps_per_item, seconds_per_item):
    textlines = text.splitlines()
    lines = len(textlines)
    FinalOutput = f"Total Time is estimated: { lines * reps_per_item * seconds_per_item / 60 } minutes ( {lines} lines)"
    return FinalOutput

randomExposuremessageText = ["Great Test for LLM function calling (with Gradio Client)", "Unknown Tracker Tab = Incomplete Reading Assistant Idea - HTML app based on text to be read", "Bing mnemonic - lost = dont ignore unusual sounds here inside lost cave", "1000 verbs in lists of 100, verbs = easy setence structure estimation (SVO, SOV, etc.)", "Can put any message here in the navigatoin tab"]

def randommarquee():
    randomExposuremessagelistitem = ""
    randomExposuremessagelistitem = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
    #randomExposuremessagelistitem2 = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
    return f" <marquee> { randomExposuremessagelistitem } </marquee> "

def TabNavigation():
    return gr.Tabs.update(selected=1) #, tabs1=nav1)

def segment_video_with_opencv(file_path, segment_duration=60):
    # Open the video file
    cap = cv2.VideoCapture(file_path.name)
    
    # Get video properties
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Calculate total segments required
    total_segments = math.ceil(total_frames / (fps * segment_duration))
    
    # List to store the file paths of the generated chunks
    generated_files = []

    for segment in range(total_segments):
        # Define the codec and create VideoWriter object
        # For .mp4 output, use the H.264 codec with the tag 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_filename = f'./splitvideo/chunk_{segment}.mp4'
        out = cv2.VideoWriter(output_filename, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
        
        for frame_num in range(fps * segment_duration):
            ret, frame = cap.read()
            if ret:
                out.write(frame)
            else:
                break
        out.release()

        # Append the file path of the generated chunk to the list
        generated_files.append(output_filename)
    
    cap.release()

    return generated_files

def fill_lines(input, num_lines=1000):
    # Split the input by newline and store it in a list
    input_list = input.splitlines()
    # Calculate how many lines each part of the input should get
    lines_per_part = int(num_lines // len(input_list))
    # Initialize an empty list to store the output
    output_list = []
    currentpart = ""
    # Loop through each part of the input
    for part in input_list:
        
        currentpart += part + "\n"
        # Fill the list of strings into one string with newlines
        filled_part = currentpart * lines_per_part #textwrap.fill(wrapped_part, width=lines_per_part)
        # Append the filled part to the output list
        output_list.append(filled_part)
        currentpart = ""
    # Join the output list into one string with newlines
    output = "\n".join(output_list)
    
    return output

def TestSplitandUpdatebtntest():
    gr.Info("Incomplete - Text Chosen for Interface")
    pass

def TestSplitandUpdate(Text):

    return f" Length of the text - { len(Text) }", gr.Button("Incomplete - Set this Text as default for all interfaces") #.click(TestSplitandUpdatebtntest, inputs=None, outputs=None) - Returns the event instead of the button with the event

TestSplitandUpdateinput = gr.Textbox(placeholder="Counter and Placeholder one point of entry for the text to be analysed across the whole app")

def RepititionInjectedReading(splitby, learning, reading):
    readingdoc = nlp(reading)
    learninglist = learning.splitlines()
    FinalOutput = ""
    if splitby == "sentences":
        numofsplitsinreading = sum(1 for _ in readingdoc.sents) #len(readingdoc.sents) is wrong because of generator
    if splitby == "words":
        numofsplitsinreading = sum(1 for _ in readingdoc.sents) #len(readingdoc.tokens) is wrong because of generator
    
    numofsplitsinlearning =  len(learninglist)
    RepInjectedText = "\n"

    for i in range(0, numofsplitsinlearning):
        for sent in readingdoc.sents:
            RepInjectedText += sent.text + " (" + learninglist[i] + ") "

    FinalOutput = f"{ numofsplitsinreading } repitition oppurtunities between the sentences: \n { RepInjectedText }"

    return FinalOutput

Repsplitdropdown = gr.Dropdown(choices=["sentences", "words"], value="sentences", label="Split by")

def hidingbuttontesttranslate(text):
    html = """
    <html>    
    <head>
    <style>
    #container {
        display: flex; 
        flex-direction: column; 
    }
    button {
        width: 200px;
        padding: 12px 20px; 
        margin: 8px 0;
    }
    .hidden {
        display: none;
      }  
    </style>
    </head>
    <body>  
    <div id="container">
    """

    doc = nlp(text)
    sentences = [sent.text for sent in doc.sents]

    for i, sentence in enumerate(sentences):
        html += f"""
            <button id="sentence{i}" class="sentence">
            {sentence}
            </button>
        """

    html += """
    </div>

    <script>
      let activeBtn;
      
      const buttons = document.querySelectorAll('.sentence');

      buttons.forEach(button => {

        button.addEventListener('click', () => {
          
          buttons.forEach(b => b.classList.add('hidden'))
          
          if (activeBtn) {
            activeBtn.classList.remove('hidden');
          }
          
          activeBtn = button; 
          activeBtn.classList.remove('hidden'); 
      
        });
      }); 
    </script>

    </body>
    </html>
    """

    return gr.Code(html, language="html"), gr.HTML(html)



def extract_video_id(youtube_url):
    # Regular expression patterns for different YouTube URL formats
    regex_patterns = [
        r"(?<=v=)[a-zA-Z0-9_-]+",  # Pattern for 'https://www.youtube.com/watch?v=VIDEO_ID'
        r"(?<=be/)[a-zA-Z0-9_-]+", # Pattern for 'https://youtu.be/VIDEO_ID'
        r"(?<=embed/)[a-zA-Z0-9_-]+" # Pattern for 'https://www.youtube.com/embed/VIDEO_ID'
    ]

    video_id = None

    for pattern in regex_patterns:
        match = re.search(pattern, youtube_url)
        if match:
            video_id = match.group(0)
            break

    return video_id

YTTtranscriptSubtitleOutput = [] 
YTTtrancriptAnalysedSubtitleOutput = []
def YTTransciptAnalysisandLoad(link):
    global YTTtranscriptSubtitleOutput, YTTtrancriptAnalysedSubtitleOutput
    if re.match(r'https?:\/\/youtu\.be\/', link) is not None:
        print("Needs Reformat")
        video_id = link.split('/')[3]
        link = 'https://www.youtube.com/watch?v={}'.format(video_id)
    else: video_id = extract_video_id(link)

    #loader = YoutubeLoader.from_youtube_url(f"{ link }", add_video_info=True)
    #YTTtranscriptloader = loader.load()

    try:
        YTTtranscript = YouTubeTranscriptApi.get_transcript(video_id)
        #YTTtranscript = YTTtranscriptloader[0]
        YTTtranscriptSubtitleOutput = YTTtranscript
    except IndexError or AttributeError: 
        print("No Transcript Found")
        YTTtranscript = "No Transcript found"
    
    YTTtrancriptAnalysed = []
    YTTTextforTranslation = ""
    for subtitle in YTTtranscript:
        YTTtrancriptAnalysed.append({'text': keep_nouns(subtitle['text']), 'start': subtitle['start'], 'duration': subtitle['duration']})
        YTTTextforTranslation += "\n" + subtitle["text"] 
    #YTTtrancriptAnalysed = str(len(YTTtranscript.page_content)) + "" + str(YTTtranscript.metadata)

    YTTtrancriptAnalysedSubtitleOutput = YTTtrancriptAnalysed

    if re.match(r'https?:\/\/(?:www\.)?youtube\.com\/watch', link) is not None:
        video_id = re.search(r'v=([^&]+)', link).group(1)
        link = 'https://www.youtube.com/embed/{}'.format(video_id)

    return f'<iframe width="100%" height="640" src="{ link }" title="" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>', YTTtranscript, YTTtrancriptAnalysed, YTTTextforTranslation

def TimedList(list, duration, splits=0):
    if splits == 0:
        splits = duration // len(list)
    for item in list:
        yield item
        time.sleep(splits)

def synctextboxes(text):
    return text

def subtitle_generator():
    global YTTtranscriptSubtitleOutput, YTTtrancriptAnalysedSubtitleOutput
    """
    A generator that yields the subtitle based on the current playback time.

    :param subtitles: List of subtitles, where each subtitle is a dictionary with 'start', 'duration', and 'text' keys.
    :param playback_start_time: The time when playback started, used to calculate the current playback time.
    """
    if YTTtranscriptSubtitleOutput == "":
        return ("No subtitle", "No subtitle", "No subtitle")
    
    playback_start_time = time.time()
    while True:
        current_time = time.time() - playback_start_time
        for index, subtitle in enumerate(YTTtranscriptSubtitleOutput):
            start_time = int(subtitle['start'])
            end_time = start_time + int(subtitle['duration'])
            if start_time <= current_time < end_time:
                yield (YTTtrancriptAnalysedSubtitleOutput[index]['text'], subtitle['text'], subtitle['start'])
                break
        else:
            yield ("", "", "")
        time.sleep(1)  # Wait for 1 second before updating

def word_to_k8s_format(word):
    if len(word) <= 2:
        return word
    else:
        return word[0] + str(len(word) - 2) + word[-1]
    
def ForeignSyllableListenFormat(text):
    FinalOutput = ""
    words = nlp_en_syllable(text)
    FirstSyllablesonly = ""
    tempsyllablelist = None

    #Keep only the first syllable of every word
    for item in words:
        if item.pos_ != "PUNCT":
            FinalOutput += item.text + " "
            tempsyllablelist = item._.syllables
            if type(tempsyllablelist) == list:
                FirstSyllablesonly += str(tempsyllablelist[0]) + " "
            FinalOutput += str(tempsyllablelist) + " " #str(item._.syllables) + " "
            FinalOutput += str(item._.syllables_count) + " | "
        else: 
            FinalOutput += item.text + " "
            FirstSyllablesonly += item.text + " "

    FinalOutput = "The first Syllables (Listening Practice): \n" + FirstSyllablesonly + "\nSyllable Analysis:\n" + FinalOutput
    return FinalOutput

# For testing purposes
# file_paths = segment_video_with_opencv("path_to_your_video.mp4")
# print(file_paths)

def FirstLetAccronymsSpacy(text):
    FinalOutput = ""
    doc = nlp(text)
    for sent in doc.sents:
        for word in sent:
            FinalOutput += word.text[0]
        FinalOutput += "\n"

    return FinalOutput

def MultiOutputInterface(inputtext):
    k8sformat = ""
    inputwordlist = inputtext.split(" ")
    for word in inputwordlist:
        k8sformat += word_to_k8s_format(word) + " "
    FirstLetAccronyms = FirstLetAccronymsSpacy(inputtext)
    AcronymMap = create_acronym_map(inputtext)
    Output1 = keep_nouns_verbs(inputtext)
    Output2 = keep_nouns(inputtext)
    Plurals = onlyplurals(inputtext)
    Output3 = TestSplitandUpdate(inputtext)
    Output4 = ForeignSyllableListenFormat(inputtext)
    return Output3[1], Output3[0], FirstLetAccronyms, AcronymMap[0], AcronymMap[1], Output1, Output2, Plurals, k8sformat, Output4 

def lingualinkassist(text, language):
    words = text.split(" ")
    FinalOutput = "Test \n"
    for word in words:
        FinalOutput += f"Next lets do '{ word }' in { language }\n"
    return FinalOutput

#Have to define inside blocks w4wsidebysidelangdest = gr.Dropdown(choices=langdropdown_choices, label="Choose Language", value="de: german") #["af", "de", "es", "ko", "ja", "zh-cn", "xh", "zu"]

#----------------------------------------------------------------------------------------------------------------------

def w4wsidebysidereadergen(text, langdest):
    #FrontRevSentChunk  as reference
    FinalOutput = "Side by Side Version: "
    Translated = "FWNWO: "
    words = text.split()
    w4wsidebysidtranslator = Translator()
    translatedFWO = w4wsidebysidtranslator.translate(text, dest=langdest[:2])
    translatedNWO =  w4wsidebysidtranslator.translate(words, dest=langdest[:2]) #src or dest
    #print(translated)
    #print(dir(translatedNWO[0]), "\n")
    #FinalOutput += "\n" + translated.text
    for obj in translatedNWO:
    #   print(f"Original Text: {obj.origin}")
    #   print(f"Translated Text: {obj.text}")
    #   print(f"Source Language: {obj.src}")
    #   print(f"Destination Language: {obj.dest}")
    #   print(f"Pronunciation: {obj.pronunciation}\n")
        FinalOutput += obj.origin + f" ({obj.text}) "
        Translated += obj.text + " "
    return FinalOutput, Translated, "FWFWO: " + translatedFWO.text

#https://huggingface.co/spaces/Geonmo/nllb-translation-demo/blob/main/app.py
def nllbtranscload_models():
    # build model and tokenizer
    #model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
                  #'nllb-1.3B': 'facebook/nllb-200-1.3B',
                  #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
                  #'nllb-3.3B': 'facebook/nllb-200-3.3B',
    #              }
    model_dict = {}
    #for call_name, real_name in model_name_dict.items():
    print('\tLoading model: %s' % 'nllb-distilled-600M' )  #% call_name)
    model = AutoModelForSeq2SeqLM.from_pretrained('facebook/nllb-200-distilled-600M') #real_name)
    tokenizer = AutoTokenizer.from_pretrained('facebook/nllb-200-distilled-600M') #real_name)
    model_dict['nllb-distilled-600M'+'_model'] = model  #call_name+'_model'] = model
    model_dict['nllb-distilled-600M'+'_tokenizer'] = tokenizer #call_name+'_tokenizer'] = tokenizer
    return model_dict

#global model_dict
model_dict = nllbtranscload_models()
nllb_lang_codes = list(flores_codes.keys())


def nllbtransctranslation(source, target, text):
    #if len(model_dict) == 2:
    model_name = 'nllb-distilled-600M'

    start_time = time.time()

    source = flores_codes[source]
    target = flores_codes[target]
    #source = "eng_Latn" #colab test
    #target = "aka_Latn" #colab test

    model = model_dict[model_name + '_model']
    tokenizer = model_dict[model_name + '_tokenizer']

    translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
    output = translator(text, max_length=400) #Check how much this can be extended

    end_time = time.time()

    output = output[0]['translation_text']
    result = {'inference_time': end_time - start_time,
              'source': source,
              'target': target,
              'result': output}
    return result['result'], result['inference_time']

#pip install tokenizers==0.13.3 protobuf==3.20.0

#----------------------------------------------------------------------------------------------------------------------------

physical_similarity = {
    # Physical transformation similarity
    'a': ['e', 'd', 'q', 'o'],
    'b': ['d', 'p', 'q', 'h'],
    'c': ['e', 'o'],
    'd': ['a', 'b', 'p', 'q'],
    'e': ['c'],
    'g': ['q', 'o'],
    'h': ['b', 'n'],
    'i': ['l', 'j'],
    'j': ['i', 'l'],
    'k': ['x'],
    'l': ['i', 'j'],
    'm': ['n', 'u', 'w'],
    'n': ['m', 'u'],
    'o': ['a', 'c', 'g', 'q'],
    'p': ['b', 'd', 'q'],
    'q': ['a', 'b', 'd', 'g', 'o', 'p'],
    'r': ['n'],
    's': ['z'],
    't': ['l'],
    'u': ['m', 'n'],
    'v': ['w', 'u'],
    'w': ['m', 'v'],
    'x': ['k'],
    'y': ['v'],
    'z': ['s'],
}

phonetic_similarity = {    # Phonetic similarity
    'c': ['k', 's', 'q'],
    'f': ['ph'],
    'k': ['c', 'q'],
    'q': ['c', 'k'],
    's': ['c', 'z'],
    'x': ['z'],
    'z': ['s', 'x'],
    # ... other letters
}

def letterbased_guess_word(target, guess):
    matching_letters = 0
    exact_letters = {}
    closest_letters = {}
    physical_similar_letters = {}
    phonetic_similar_letters = {}

    # Alphabet dictionary for calculating distance
    alphabet = {chr(i): i - 97 for i in range(97, 123)}

    # Count and list exact letter matches in both words
    for letter in set(target):
        count = min(target.count(letter), guess.count(letter))
        if count > 0:
            exact_letters[letter] = count

    for letter in target:
        # Skip if letter is not a lowercase letter
        if letter not in alphabet:
            continue

        # Check for matching letters
        if letter in guess:
            matching_letters += 1

        # Find closest letter in guess based on alphabet distance
        closest_letter = min(guess, key=lambda g: abs(alphabet.get(g, 0) - alphabet[letter]))
        closest_letters[letter] = closest_letter

        # Find physical similar letters in guess
        physical_similar_letters[letter] = [g for g in guess if g in physical_similarity.get(letter, [])]

        # Find phonetic similar letters in guess
        phonetic_similar_letters[letter] = [g for g in guess if g in phonetic_similarity.get(letter, [])]

    return {
        "matching_letters": matching_letters,
        "exact_letters": exact_letters,
        "closest_letters": closest_letters,
        "physical_similar_letters": physical_similar_letters,
        "phonetic_similar_letters": phonetic_similar_letters,
    }

#----------------------------------------------------------------------------------------------------------------------------

speedmastery_load_imagesinput = gr.Files(file_count="multiple", type="binary", file_types='image') 

def speedmastery_load_images(image_files):
    #return [image_file for image_file in image_files]
    images = []
    for image_file in image_files:
        # Read the image file and convert it to a PIL.Image object
        image = Image.open(io.BytesIO(image_file))
        images.append(image)
    return images


# Define the Gradio interface inputs and outputs for video split
spvvideo_file_input = gr.File(label='Video File')
spvsubtitle_file_input = gr.File(label='Subtitle File')
spvdownload_output = gr.File(label='Download Segmented Files')

Markovlength = gr.Number(value=30, label='Length of generation')

groupinput_text = gr.Textbox(lines=2, label="Enter a list of words")
groupoutput_text = gr.Textbox(label="Grouped words")

Translationchuncksize = gr.Number(value=4998)
RepSched_Num_lines = gr.Number(value=1000, label="number of lines")

randomExposuremessage = randommarquee()
randomExposuremessage2 = randommarquee()

VideoTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
VideoTestSubtitleInput = gr.File(label="select a subtitle file", file_types=[".txt", ".srt", ".vtt"])
VideoSplitTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
SplitVideoOutput = gr.FileExplorer(root='./splitvideo')

with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', secondary_hue='red', neutral_hue='blue', )
  gr.HTML('<div style="display: flex; justify-content: center; align-items: center; height: 100%;"> Reading comprehension speed through picture based compression (collage), Live Image Subtitles and Listening Comprehension Test - <a href="https://chat.openai.com/g/g-bYMSVlb8y-lingua-link"> -- Lingua Link (Simple GPT for assistinng image creation) -- </a> |  </div><div style="display: flex; justify-content: center; align-items: center; height: 100%;"> ---- Under Construction: Very Slowly figuring out what AI intergrated interface means (Chat vs Forms vs Function calling vs Sensor + Trigger vs Agent) | How to end copy paste once and for all? ---- </div> <div style="display: flex; justify-content: center; align-items: center; height: 100%;"> All the apis from the below space need to be treated like RAG as notes for the LLM to read before providing its answer </div>')
  with gr.Accordion("Translation HF Spaces/Sites (Click Here to Open) - Use to get rough translations", open=False):
    with gr.Row():
        linktotranslate = gr.Dropdown(choices=["https://facebook-seamless-m4t-v2-large.hf.space", "https://hf-audio-whisper-large-v3.hf.space", "https://pyf98-owsm-v3-demo.hf.space", "https://kadirnar-multilingual-translation.hf.space", "https://geonmo-nllb-translation-demo.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
        translatespacebtn = gr.Button("Use the chosen URL to load interface with a translate model")
    translatespace = gr.HTML("Translate Space Chosen will load here")
    translatespacebtn.click(display_website, inputs=linktotranslate, outputs=translatespace)
  with gr.Accordion("LLM HF Spaces/Sites (Click Here to Open) - Use 'Acronym Map Creation Space' Tab with this - Ask for Translation of image tags made below, sentence to emojis, Wordlists, Test Conversations, Get Grammar Explanations etc., Can use GPT-4 or new SOTA to review the conversation", open=False):
    with gr.Row():
        linktochat = gr.Dropdown(choices=["https://sdk.vercel.ai/docs", "https://labs.perplexity.ai/", "https://chat.lmsys.org", "https://deepseek-ai-deepseek-coder-7b-instruct.hf.space", "https://01-ai-yi-34b-chat.hf.space", "https://ysharma-zephyr-playground.hf.space", "https://huggingfaceh4-zephyr-chat.hf.space", "https://osanseviero-mistral-super-fast.hf.space", "https://artificialguybr-qwen-14b-chat-demo.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space", "https://ysharma-explore-llamav2-with-tgi.hf.space", "https://mosaicml-mpt-30b-chat.hf.space", "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
        chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left. For lymsys / chat arena copy the link and use a new tab")
    with gr.Accordion("Some prompt ideas", open=False):
        with gr.Accordion("Prompts in text (Manual copy paste)", open=False):
            gr.HTML(LLPromptIdeas)
        with gr.Group():
            promptidea0 = gr.Code(label="Prompt Idea 1", value=LLPromptIdeasasbtns[0])
            promptidea1 = gr.Code(label="Prompt Idea 2", value=LLPromptIdeasasbtns[1])
            promptidea2 = gr.Code(label="Prompt Idea 3", value=LLPromptIdeasasbtns[2])
            promptidea3 = gr.Code(label="Prompt Idea 4", value=LLPromptIdeasasbtns[3])
            promptidea4 = gr.Code(label="Prompt Idea 5", value=LLPromptIdeasasbtns[4])
    chatspace = gr.HTML("Chat Space Chosen will load here")
    chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)
  with gr.Accordion("Image HF Spaces/Sites (Click Here to Open) - Use with the image placeholder in Workflows tab", open=False):
    with gr.Row():
        linktoimagegen = gr.Dropdown(choices=["https://guoyww-animatediff.hf.space", "https://segmind-segmind-stable-diffusion.hf.space", "https://simianluo-latent-consistency-model.hf.space", "https://artificialguybr-studio-ghibli-lora-sdxl.hf.space", "https://artificialguybr-pixel-art-generator.hf.space", "https://google-sdxl.hf.space", "https://fffiloni-sdxl-control-loras.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
        imagegenspacebtn = gr.Button("Use the chosen URL to load interface with a chat model")
    imagegenspace = gr.HTML("Chat Space Chosen will load here")
    imagegenspacebtn.click(display_website, inputs=linktoimagegen, outputs=imagegenspace)
  #-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  #-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  with gr.Row():
    with gr.Column(scale=1):
        gr.HTML(""" <div style="height: 350px; width: 100%; border: 1px solid black; overflow: auto;"> Some useful links <br> <a href='https://github.com/eugeneyan/open-llms'> -- Opensource List -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard'> -- Open LLM Leaderboard -- </a> | <a href='https://openxlab.org.cn/apps'> -- Openxlabs - Huggingface Alternative -- </a> | <a href='https://huggingface.co/spaces/sanchit-gandhi/whisper-jax'> -- Whisper JAX -- </a> | <a href="https://translate.google.com/?hl=en&tab=TT"> -- Google Translate -- </a> | <a href='https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis'> -- Modelscope Text to Video -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion'> -- stable-diffusion 2 -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion-1'> -- stable-diffusion 1 -- </a> | <a href='https://huggingface.co/spaces/kakaobrain/karlo'> -- karlo 1 -- </a> | <a href='https://huggingface.co/spaces/suno/bark'> -- Bark (TTS) -- </a> | <a href='https://chat.lmsys.org/'> -- Offline Text Model Demos -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> | <a href='https://beta.elevenlabs.io/'> -- Eleven Labs -- </a> | <a href='https://www.d-id.com/'> -- Animate an Image -- </a> | <a href='https://voice.ai/'> -- Clone a voice -- </a> | <a href='https://openai.com/pricing'> -- OpenAI pricing -- </a> | <a href='https://huggingface.co/spaces/sohojoe/soho-clip-embeddings-explorer'> -- Image Training Data Search -- </a> | <a href='https://huggingface.co/spaces/huggingchat/chat-ui'> -- Huggingface Chat -- </a> | <a href='https://huggingface.co/spaces/bguisard/stable-diffusion-nano'> -- 128x128 Stable Diffusion (Fast) -- </a> | <a href='https://huggingface.co/spaces/colonelwatch/abstracts-index'> -- Search 95 million research abstracts -- </a> | <a href='https://huggingface.co/datasets/roneneldan/TinyStories'> -- Tiny Stories Dataset -- </a> | <a href='https://huggingface.co/spaces/lykeven/visualglm-6b'> -- Visualglm6b - Discuss images -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/camenduru/potat1'> -- Potat1 Text2vid -- </a> | <a href='https://twitter.com/willdepue/status/1661781355452325889'> -- Alexandria Prohect (Will Deque) - Free Embeddings -- </a> |  <a href='https://artsandculture.google.com/'> -- Google Arts and Culture Portal -- </a> | <a href='https://huggingface.co/spaces/Matthijs/whisper_word_timestamps'> -- Word Level Timestamps  -- </a> | <a href='https://huggingface.co/spaces/zaanind/NLLB-translation'> -- NLLB 600M Demo -- </a> = <a href='https://github.com/facebookresearch/fairseq/tree/nllb'> -- NLLB Github -- </a> | <a href='https://huggingface.co/spaces/hysts/zeroscope-v2'> -- Zeroscope v2 Text to video -- </a> | <a href='https://huggingface.co/spaces/SpacesExamples/ComfyUI'> -- ComfyUI Text to Image -- </a> | <a href='https://huggingface.co/spaces/DeepFloyd/IF'> -- Deepfloyd IF - Text in image -- </a> | <a href='https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-in-Gradio'> -- ChatGPT Custom Plugins Test Space -- </a> | <a href='https://www.reddit.com/r/LocalLLaMA/'> -- r/LocalLlama -- </a> | <a href='https://www.reddit.com/r/singularity/'> -- r/Singularity -- </a> | <a href='https://huggingface.co/spaces/hysts/SD-XL'> -- SD-XL Test Space -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless_m4t'> -- Seamless M4T - Translation one stop shop -- </a> | <a href='https://huggingface.co/spaces/codellama/codellama-playground'> -- Code Llama playground -- </a> | <a href='https://huggingface.co/spaces/Voicemod/Text-to-Sing'> -- Text to sing -- </a> | <a href='https://huggingface.co/spaces/camenduru-com/webui'> -- Stable Diffusion Webui (Camenduru Space) -- </a> | <a href='https://huggingface.co/spaces/ysharma/WizardCoder34b'> -- Wizard Coder 34B -- </a> | <a href='https://huggingface.co/spaces/chansung/co-write-with-llama2'> -- Cowrite with llama2 -- </a> | <a href='https://huggingface.co/spaces/fffiloni/Image-to-Story'> -- Image to Story -- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://github.com/THUDM/AgentBench'> -- Agent Benchmarks -- </a> | <a href='https://www.convex.dev/ai-town'> -- AI Town Live Demo -- </a> = <a href='https://github.com/a16z-infra/ai-town'> -- AI Town Repository (Deployment]) -- </a> | <a href='https://github.com/joonspk-research/generative_agents/tree/main'> -- Generative Agents: Interactive Simulacra of Human Behavior (Research paper Repository) -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceM4/idefics_playground'> -- IDEFICS - open Multimodal model -- </a> | <a href='https://github.com/facebookresearch/belebele'> -- Belebele (Meta Dataset) -- </a> | <a href='https://huggingface.co/spaces/jbilcke-hf/ai-comic-factory'> -- AI Comic Factory -- </a> | <a href='https://github.com/camenduru'> -- CAMENDURU REPOS -- </a> | <a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> | <a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter (alt to ChatGPT Pro) -- </a> | <a href='https://easywithai.com/fun-ai-tools/'> -- List - Easy with AI -- </a> | <a href='https://huggingface.co/spaces/Xenova/whisper-web'> -- Whisper Web (UI) -- </a> | <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <a href='https://huggingface.co/spaces/AP123/IllusionDiffusion'> -- Illusion Diffusion (Hide words or shapes in the image) -- </a> | <a href='https://huggingface.co/spaces/Shopify/background-replacement'> -- Background replacement - Shopify -- </a> |  <a href='https://huggingface.co/spaces/multimodalart/LoraTheExplorer'> -- Lora The Explorer (SDXL) -- </a> | <a href='https://huggingface.co/spaces/XCLiu/InstaFlow'> -- InstaFlow (Under 1 second Inference) -- </a> | <a href='https://github.com/tairov/llama2.mojo'> -- TinyStories on mojo (230+ tk/s) -- </a> | <a href='https://emojis.alexandru.so/p/OHVEmfMwQl'> -- Any Emoji you want - emojijs -- </a> | <a href='https://huggingface.co/spaces/google/sdxl'> -- SDXL on TPUv5 -- </a> | <a href='https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model'> -- LCM - SD1.5 at 7secs per 4 images (after coldstart)  -- </a> | <a href='https://huggingface.co/spaces/fffiloni/sdxl-control-loras'> -- SDXL Control Lora -- </a> | <a href='https://huggingface.co/spaces/aadnk/faster-whisper-webui'> -- Whisper WebUI -- </a> | <a href='https://huggingface.co/spaces/guoyww/AnimateDiff'> -- AnimateDiff: Create an image make a video -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless-m4t-v2-large'> -- Seamless m4t v2 -- </a> | <a href='https://huggingface.co/spaces/Otter-AI/OtterHD-Demo'> -- OtterHD: Multimodal model -- </a> | <a href='https://ai.meta.com/blog/ego-exo4d-video-learning-perception/'> -- Ego-exo4d Multimodal dataset -- </a> | <a href='https://imagine.meta.com/'> -- Meta Imagine images (Free)  -- </a> | <a href='https://www.mage.space/'> -- Mage Space images (Free)  -- </a> | <a href='https://www.bing.com/images/create?FORM=GENILP'> -- Bing Image Creator (Free)  -- </a> | <a href='https://jalammar.github.io/'> -- Jay Alammar Blog - Illustrated Transformer, Stable Diffusion and More -- </a> |   </div>""")
        with gr.Tabs()  as nav1:
            with gr.Tab("Rep - HTML"):
                gr.HTML("UNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know")
                gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
                        See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj"> Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>) on <a href="https://codepen.io">CodePen</a>. </iframe>""")  
            with gr.Tab("Rep - Gradio"):
                gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, description="Word Grouping and Rotation - Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue() 
            with gr.Tab("Navigation"):
                gr.HTML("Primary goal of this space is to help with memorisation --> Two main forms read or listen (rewriting is also an option for mission critical information - acronym map (too time comsuming))")
                gr.HTML("Picture Annotation <br> Chorus Focused Word List <br> Merged Subtitles <br> Repetitive Audio (TTS) <br> Word and Sentence Jumbling <br> Unkown: Wordnet <br> Unknown: Wikipeadia <br>")
                PracticeExposureInput = gr.Textbox("", placeholder="Exposure practice = look up", label="Exposure at the top")
                PracticeExposurebtn = gr.Button("Change Default") #Button CLick is defined under the variable it needs to manipulate to avoid undefined error
                gr.Button("Tab Navigation").click(TabNavigation, inputs=None, outputs=[nav1])
            with gr.Tab("Words Lists"):
                gr.HTML("Stop, Sight(Dolch) and other Wordlists")
                gr.HTML("Wikipeadia <br> Basic: <a href='https://en.wikipedia.org/wiki/Dolch_word_list'> -- Dolch (Sight) Words -- </a> |  <br> Advanced: <a href='https://en.wikipedia.org/wiki/Blend_word'> -- Blend Word -- </a> | <a href='https://en.wikipedia.org/wiki/List_of_portmanteaus'> -- List_of_portmanteaus -- </a> | ")
                gr.HTML("Reddit <br> <a href='https://www.reddit.com/r/wordplay/'> -- Wordplay -- </a> | ")
                gr.HTML("Language Tests <br> ")
                gr.HTML("Other <br> <a href='https://english.stackexchange.com/'> -- English (StackExchange) -- </a> | <a href='https://english.stackexchange.com/questions/572884/what-is-it-called-when-two-words-are-combined-by-overlapping-each-other'> -- Overlapping Blends (StackExchange) -- </a> |   ")
            with gr.Tab("Vector Database = Memorisation"):
                gr.HTML("Phrasebook on demand in realtime <br><br> Open AI - 10000 * 1000tokens (+- 4000 characters) = 1$ (0.0001 per 1000 tokens / 750 words), Cohere Multilingual = free for personal use / Commercial use =    \n Vector Database query = Better than text search but not for logical relationships")           
            with gr.Tab("Time Estimate Calculator"):
                gr.HTML("Repitition = A subconcious time gaame - transparent screens + below repitition assist (Vision) or (Audio)")
                gr.Interface(fn=RepititionPracticeTimeCalculator, inputs=["text", "number", "number"], outputs="text")
        with gr.Row():
                PracticeExposure = gr.HTML(randomExposuremessage)
                PracticeExposure2 = gr.HTML(randomExposuremessage2)
                PracticeExposurebtn.click(fn=changeexposuretext, inputs=PracticeExposureInput, outputs=PracticeExposure)
        with gr.Row():
            with gr.Column(scale=1):
                gr.HTML("Advanced Repitition = Combinatorics --> to understand a sentence properly you need understanding of every word --> in language that means use with other words --> Combos within the unique words in a sentence, paragraph, page, etc. --> as close to 3 word sentences")
            with gr.Column(scale=1):
                gr.HTML("<p>Timing Practice - Repitition: Run from it, Dread it, Repitition is inevitable - Thanos --> Repitition of reaction - Foreign in eyes/ears native in mind (For beginners) | Repitition is a multitask activity like driving must be subconcious process to show mastery </p>")
    #-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    #-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    with gr.Column(scale=3): 
        with gr.Tab("General Idea"):
            gr.HTML("True mastery is from the relations between each item aka how every word relates to each other - Repitition in the form combinatorics ") 
            with gr.Accordion("Memorisation by string comparison idea", open=False):
                gr.HTML('Result of prompt chain starting with:  Lets say I have the strings "red" and "ppalgan" how can I guess the second from the first from just spelling (eg. similar words and distance in the alphabet, ...), how can I use python to do this i.e. output of no matching letters, closest letter to r, then e, then d, a dictionary of letters that look similar eg. d and p, l and I a and d etc.')
                gr.Interface(fn=letterbased_guess_word, inputs=["text", "text"], outputs="text", description="letter based guess suggestions (one word to one word is the designed use case)")   
            gr.HTML("Side by side reading creator (Google Translate) TODO - Roman output of Non roman characters")
            with gr.Group():
                with gr.Row():    
                    #gr.Interface(fn=w4wsidebysidereadergen, inputs=["text", w4wsidebysidelangdest], outputs=["text", "text", "text"], description="Side by side reading creator")
                    w4wsidebysideinput = gr.Text(label="Paste Text you want to learn here (wordlists and UDHR can be used as )", placeholder="Enter Text Here")
                with gr.Row(): 
                    w4wsidebysidelangdest = gr.Dropdown(choices=langdropdown_choices, label="Choose destination language", value="de: german")
                    w4wsidebysidebtn =  gr.Button("Create Side by Side, FWNWO, and FWFWO (Just read start to finish of each till you can read the FWFWO without assistance)")
                with gr.Row():    
                    w4wsidebysideOutput = gr.Text(label="Side by side", placeholder="Side by side will display here")
                    w4wsidebysideFWNWOOutput = gr.Text(label="Foreign Word Native Word Order", placeholder="FW NWO will display here")
                    w4wsidebysideFWFWOOutput = gr.Text(label="Foreign Word Foreign Word Order", placeholder="FW FWO will display here")
                    w4wsidebysidebtn.click(fn=w4wsidebysidereadergen, inputs=[w4wsidebysideinput, w4wsidebysidelangdest], outputs=[w4wsidebysideOutput, w4wsidebysideFWNWOOutput, w4wsidebysideFWFWOOutput])
                with gr.Row():
                    gr.HTML("Coming Soon")
                with gr.Row():
                    w4wsidebysideWordCountOutput = gr.Text(label="Word Count", placeholder="Word Count will display here")
                    w4wsidebysideRandomisedOutput = gr.Text(label="Random Order As Test", placeholder="Randomised version (Transition Tab most left bottom) will display here")
                    w4wsidebysideQueGenOutput = gr.Text(label="Questions generation as comprehension test", placeholder="Questions generated will display here")
                    w4wsidebysideUNWFWOOutput = gr.Text(label="HTML as UNWFWO assistant", placeholder="HTML as UNWFWO assistant download will display here")
            gr.HTML("Side by side reading creator (NLLB-600M (+-3gb / setting has 400 tokens? as max length for inference optimisation?)- 200 languages vs 107 in googletrans) - <a href='https://github.com/facebookresearch/fairseq/tree/nllb'> -- Fairseq Github -- </a> |  inspired by - <a href='https://huggingface.co/spaces/Geonmo/nllb-translation-demo'> -- Geonmo NLLB Demo (Runtime Error Dec 23) -- </a> | <a href='https://huggingface.co/spaces/vutuka/nllb-vutuka-translation'> -- Vutuka demo (Working) -- </a>")
            with gr.Group():
                gr.HTML("Under Construction - generator and cpu based to beat gpu cost, cpu wait time and network dependency for local use")
                nllbtranscpuinput = gr.Text(label="Paste Text you want to learn here (wordlists and UDHR can be used as )", placeholder="Enter Text Here")
                with gr.Row(): 
                    nllbtranscpulangsrc = gr.Dropdown(choices=nllb_lang_codes, label="Choose source language", value="English")
                    nllbtranscpulangdest = gr.Dropdown(choices=nllb_lang_codes, label="Choose target language", value="Akan")
                    nllbtranscpubtn =  gr.Button("Create Side by Side, FWNWO, and FWFWO (Just read start to finish of each till you can read the FWFWO without assistance)")
                with gr.Row():    
                    with gr.Column(scale=4): 
                        nllbtranscpuOutput = gr.Text(label="Side by side", placeholder="Side by side will display here")
                    with gr.Column(scale=1): 
                        nllbtranscpudetailsOutput = gr.Text(label="Inference Details", placeholder="Details will display here")
                    nllbtranscpubtn.click(fn=nllbtransctranslation, inputs=[nllbtranscpulangsrc, nllbtranscpulangdest, nllbtranscpuinput], outputs=[nllbtranscpuOutput, nllbtranscpudetailsOutput])
            gr.Interface(fn=LoadNLTKUDHRText, inputs=NLTKudhr, outputs=["text", "textarea"], description="UDHR as some test texts")
        with gr.Tab("Youtube Subs Listening Comprehension"):
            gr.HTML("<a href='https://www.lingq.com/en/'>State Management Solution for Word --> Find LingQ Here --> https://www.lingq.com/en/</a>")
            with gr.Tab("New - Learning with Youtube"):
                gr.HTML("TODO: 1st syllable subtitle. First Syllable of any word is all you need to listen - pair this with Youtube subtitle interface - Listening is ability to spell really fast (real time)")
                gr.HTML(" <a href='https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION'> -- artificialguybr's Video Translation/Transcription Space -- </a> | ")
                with gr.Group():
                    gr.HTML("Custom Subtitles Ideas - Realtime Practice = Test (Pause to learn)")
                    YTTransciptOutDropdown = gr.Dropdown(choices=["https://www.youtube.com/watch?v=UYk43fncV68&pp=ygULcnVubmluZyBtYW4%3D", "https://youtu.be/dxVaP0-aFIE"], value="https://www.youtube.com/watch?v=UYk43fncV68&pp=ygULcnVubmluZyBtYW4%3D", allow_custom_value=True)
                    YTTransciptOutbtn = gr.Button("Transcript to text")
                    YTTransciptOutVid = gr.HTML('Video will load Here')
                    gr.Interface(fn=subtitle_generator, inputs=None, outputs=["textbox", "textbox", "textbox"], description='Modified Subtitles Test - will only work after video has been loaded')
                    with gr.Row():
                        with gr.Column(scale=4):
                            with gr.Row():
                                YTTransciptAnalysedOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
                            with gr.Row():    
                                YTTransciptOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
                        with gr.Column(scale=1):
                            YTTransciptTextOnlyOut = gr.Textbox(placeholder="Place the translated transcript here (Click on the youtube logo to open the video and copy)")
                    YTTransciptOutbtn.click(fn=YTTransciptAnalysisandLoad, inputs=YTTransciptOutDropdown, outputs=[YTTransciptOutVid, YTTransciptOut, YTTransciptAnalysedOut, YTTransciptTextOnlyOut])
            with gr.Tab("Old - Visual - Multiline Custom Video Subtitles"):
                gr.HTML("------------------------  INCOMPLETE (Somewhere around the SRT merging and merging process) -------------------------------------")
                gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
                gr.HTML("""<hr> <p>For Transcripts to any video on youtube use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a> | <a href="https://huggingface.co/spaces/vumichien/whisper-speaker-diarization">https://huggingface.co/spaces/vumichien/whisper-speaker-diarization</a>""")
                #gr.HTML("<p>If Space not loaded its because of offline devopment errors please message for edit</p> <hr>")
                with gr.Tab("Merged Subtitles (Incomplete)"):
                    gr.HTML(""" Core Idea = Ability to follow one video from start to finish is more important than number of words (except for verbs) <hr>
                            Step 1 - Get foreign transcript - WHISPER (Need to download video though - booo) / Youtube / Youtube transcript api / SRT websites <br>
                            Step 2 - Get Translation of foreign transcript <br>
                            Step 3 - Word for Word Translation Creation in both Directions (Paste Google Translation here) <br>
                            """)
                    gr.Interface(fn=split_srt_file, inputs=["text", SRTLangOptions] , outputs=["text", "file", "text", "text"], description="SRT Contents to W4W Split SRT for Google Translate")
                    gr.Interface(fn=chunk_srt_text, inputs=['text', Translationchuncksize], outputs=['dataframe','text'], description='Assitant for google translate character limit - aka where to expect cuts in the text')
                    gr.HTML("Step 4 - Pronounciation (Roman) to Subtitle Format --> GTranslate returns unformatted string")
                    gr.Interface(fn=splittext, inputs="text", outputs="text", description="Text for w4w creation in G Translate")
                    gr.HTML("Step 5 - Merge into one file")
                    with gr.Row():
                        RomanFile = gr.File(label="Paste Roman")
                        W4WFile = gr.File(label="Paste Word 4 Word")
                        FullMeanFile = gr.File(label="Paste Full Meaning")
                        MacaronicFile = gr.File(label="Paste Macaronic Text")
                        SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text")
                    with gr.Row():
                        MergeButton = gr.Button('Merge the seperate files into one interpolated file (Line by line merge)', )
                    with gr.Row():
                        MergeOutput = gr.TextArea(label="Output")
                        MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput], )
                    with gr.Row():
                        gr.Text("Make sure there are 4 spaces after the last subtitle block (Otherwise its skipped)")
                        CleanedMergeButton = gr.Button('Create a Usable file for SRT')
                    with gr.Row():
                        CleanedMergeOutput = gr.TextArea(label="Output")
                        CleanedMergeButton.click(fn=SRTLineSort, inputs=[MergeOutput], outputs=[CleanedMergeOutput])
                with gr.Tab("Split video to segments"):
                    gr.HTML("<a href='https://www.vlchelp.com/automated-screenshots-interval/'>How to make screenshot in vlc - https://www.vlchelp.com/automated-screenshots-interval/</a><br>")
                    gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output)
                    gr.TextArea("Placeholder for ffmpeg command generator and ffmpeg-python code to split video")
                gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ")
            with gr.Tab("Audio - Only English thoughts as practice"):
                gr.HTML("For Audio Most productive is real time recall of native (where your full reasoning ability will always be) <br><hr> Find Replace new lines of the foreign text with full stops or | to get per word translation")
                gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions2], outputs="audio", description="Paste only english words in foreign order and then keep removing the words from this to practice as effectively")
        with gr.Tab("Speed through Imagery"):
            gr.HTML("Categories for Image Creation <br>1. Extract only nouns <br>2. Extract Acronyms <br>3. Convert verbs to Careers <br>Dall-E 3 best for multi concept images - every thing else = one picture at a time <br>Ask the llm to create a prompt from the nouns extracted or to create english words ot sentences from the acronyms")
            ImageryInput = gr.Textbox(placeholder='Enter the text here and use in this tab')
            gr.HTML("<a href='https://chat.openai.com/g/g-bYMSVlb8y-lingua-link'> -- Lingua Link (Simple GPT for assistinng image creation) -- </a> <br>Use with placeholder generator tab below ")
            gr.Interface(fn=lingualinkassist, inputs=["text","text"], outputs="text", description="Lingua Link Prompt Assistance")
            with gr.Tab("Filter Text"):
                gr.Interface(fn=onlyplurals, inputs=["text"], outputs=["text"], description="Only plurals = optimal concepts to learn first as LT work = repitition")
                gr.Interface(fn=create_acronym_map, inputs="textbox", outputs="textbox", description="Acronyms")
                gr.Interface(fn=keep_nouns, inputs="textbox", outputs="textbox", description="Nouns only")
            with gr.Tab("Placeholder Genration"):
                gr.HTML("Placeholder for every images of each sentence - Good ChatGPT + Dall-E ")
                with gr.Row():
                    with gr.Column(scale=4):
                        imageplaceholderinput = gr.TextArea()
                    with gr.Column(scale=1):
                        gr.Label("Enter Text and Get a line by line placeholder for image associated with the text")
                        imageplaceholderdownload = gr.File()
                imageplaceholderbtn = gr.Button("Create the image placeholder")
                with gr.Row():
                    with gr.Column(scale=3):
                        imageplaceholderoutput = gr.HTML("Preview will load here")
                    with gr.Column(scale=2):
                        imageplaceholdertextoutput = gr.Code("The code for the HTML created will come here")
                imageplaceholderbtn.click(fn=imagebasedreading, inputs=[imageplaceholderinput], outputs=[imageplaceholderdownload, imageplaceholderoutput, imageplaceholdertextoutput])
            with gr.Tab("Word level Placeholder Genration"):
                gr.HTML("Placeholder for every images of each sentence - Good ChatGPT + Dall-E ")
                with gr.Row():
                    with gr.Column(scale=4):
                        imageplaceholderinputwordlevel = gr.TextArea()
                    with gr.Column(scale=1):
                        gr.Label("Enter Text and Get a line by line placeholder for image associated with the text")
                        imageplaceholderdownloadwordlevel = gr.File()
                imageplaceholderbtnwordlevel = gr.Button("Create the image placeholder")
                with gr.Row():
                    with gr.Column(scale=3):
                        imageplaceholderoutputwordlevel = gr.HTML("Preview will load here")
                    with gr.Column(scale=2):
                        imageplaceholdertextoutputwordlevel = gr.Code("The code for the HTML created will come here")
                imageplaceholderbtnwordlevel.click(fn=imagebasedreadingwordlevel, inputs=[imageplaceholderinputwordlevel], outputs=[imageplaceholderdownloadwordlevel, imageplaceholderoutputwordlevel, imageplaceholdertextoutputwordlevel])
            with gr.Tab('Picture Subtitles / Image Slide Show'):
                gr.HTML("----------------------------------INCOMPLETE------------------------------------ runs into filepath error")
                gr.Interface(fn=speedmastery_load_images, inputs=speedmastery_load_imagesinput, outputs="gallery", description="Put the images you want to practice or work on")
                gr.Image()
                gr.HTML('placeholder for button to start generator for time based image recognition i.e. Picture Subtitles')
                gr.Gallery()
        with gr.Tab("UNWFWO - Stateful Reading - Progress Tracking"):
            gr.HTML("The problem is to learn you need to repeat things you know that you didnt know thiss morning - The repitition space to the right is only half of solution <br>You need to read new stuff while revising the stuff you didnt know that you just learned aka the things you write as notes")
            gr.HTML("The sentences used as notes repitition interface then can count as recently known sentences that you can ignore in favour of the sentences you didnt interact with")
            gr.Label("Some Tests - click to hide - unknown word only list")     
            gr.Interface(fn=hidingbuttontesttranslate, inputs="text", outputs=["code", "html"])
            gr.Label("Missing is database integration for the counter and non-english - ALSO TODO - Parralell interface for the html and acronym creator")
            gr.Interface(fn=UnknownTrackTexttoApp, inputs="text", outputs=["file", "html", "code"], description="HTML mini App - UNNWFWO (To track verbs you dont know for listening practice). Use the text from here to create lists you use for the TTS section")
            gr.Interface(create_acronym_map, inputs='text', outputs=['text', 'text'])
            gr.HTML("On the Acronyms you need to underline the verbs")
            gr.HTML("Aim for 1000 reps per item in your mind - the end goal for full sentences is to identify the SOV equivalent ASAP")
            gr.Interface(fill_lines, inputs=["text", RepSched_Num_lines], outputs="text")
        with gr.Tab("Kinesthetic / Mime Translation"):
            gr.HTML("placeholder for prompt generator and tests for llama-cpp with slm")
            gr.HTML("Keep nouns and verbs -- turn every noun into a verb -- turn every verb into a pose")
            gr.HTML("Viseme Test with video recording screenshots judged LMM")
        with gr.Tab("Beginner - Listen + Read"):
            gr.Label("Closed Eye Recital per new word | 1 new word a minute while recycling the words from the previous minutes")
            with gr.Row():
                with gr.Column(scale=1):
                    gr.HTML("Listening - Songs - Chorus <br> Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <br> <b>Tiny Stories dataset is like a graded reader</b> <br>")
                    gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions, "checkbox"], outputs="audio", description="Paste chorus lyrics from below here and use TTS or make notes to save here (Or paste anything)")
                    with gr.Accordion("TTS Spaces", open=False): 
                        TTSspaceoptions = gr.Dropdown(choices=["https://suno-bark.hf.space", "https://coqui-xtts.hf.space"], label="existing whisper spaces")
                        TTSspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
                        TTSspaceoptionsOut = gr.HTML()                    
                        TTSspaceoptionsbtn.click(fn=display_website, inputs=TTSspaceoptions, outputs=TTSspaceoptionsOut)
                    gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
                    gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
                    gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
                with gr.Column(scale=1):
                    gr.HTML("""Reading - Caption images (SD/Dalle-E) <br> <a href='https://unsplash.com/'> -- Unsplash - free images -- </a> | <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator"> --Huggingface CLIP-Interrogator Space-- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- Tag2Text is faster than clip -- </a> | <br> <a href='https://huggingface.co/spaces/bkhmsi/Word-To-Image'> -- Transform word to an image -- </a> | <a href='https://huggingface.co/spaces/microsoft/Promptist'> -- Promptist (Microsoft) -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> """)
                    with gr.Accordion("RAM/Tag2Text Space - Create Tags here and Copy paste", open=False):
                        RAMSpaceLink = gr.Textbox("https://xinyu1205-recognize-anything.hf.space")
                        RAMSpacetest = gr.HTML("")
                        RAMSpacetestbtn = gr.Button('Load Space')
                        RAMSpacetestbtn.click(display_website, RAMSpaceLink, RAMSpacetest)
                    with gr.Accordion("SAM Space Test", open=False):
                        SAMSpaceLink = gr.Textbox("https://curt-park-segment-anything-with-clip.hf.space")
                        SAMSpacetest = gr.HTML("")
                        SAMSpacetestbtn = gr.Button('Load Space')
                        SAMSpacetestbtn.click(display_website, SAMSpaceLink, SAMSpacetest)
                    gr.HTML("Use Shift Enter To put text on new lines if the text doesnt fit <br> if theres an error you have to remove the foreign letters and place roman ones")
                    gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt) - Describe from one side to the other to make guessing easy")
        #with gr.Tab("Transcribe - RASMUS Whisper"):
            #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
        with gr.Tab("Beginner - Reading Assitant + Unknown Tracker"):
            gr.HTML(" <a href='https://www.onenote.com/learningtools'> -- Microsoft Immersive Reader (Comprehension) -- </a> | <a href='https://www.lingq.com/en/'> LingQ - (Word Familiarity based) </a> ")
            gr.HTML("Repitition of things you know is a waste of time when theres stuff you dont know <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p> <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>")
            gr.Textbox("Placeholder for a function that creates a set list and can takes a list for known words and auto find replaces the stuff you know out of the content")
            gr.Interface(fn=GuidedReading, inputs=["text", guidedreadingseperator], outputs="text", description="Manual POS Tag and Transliteration", examples=textspreprocess)
            gr.HTML("Place holder for a translate to english interface so that highlighting can still work as only english supported for now - <a href='https://translate.google.com/'> -- Google Translate -- </a>")
            with gr.Tab("Unique word ID - use in Infranodus"):
                with gr.Accordion(label="Infranodus", open=False):
                    gr.HTML(" <a href='https://infranodus.com/'> -- Infranodus - Word Level Knowledge graphs -- </a> | <br> Use the below interfaces to find the items that dont have entries --> These will represent new concepts or people which need to be understood individually to fully understand the text --> Infranodus search will help find related and unrelated investigation paths <br><br> TODO Figure Output Zoom / Image Dimensions")
                    gr.Image(label="Open Infranodus Screenshot")
                    gr.Image(label="Open Infranodus Screenshot")
                gr.Interface(fn=unique_word_count, inputs="text", outputs="text", description="Wordcounter")
                gr.HTML("Use the below interface to fill in the space in this format and then use the chat iframe at the top to ask llm to analyse this: <br><br> Consider how the following sentence meaning will change if the each if the selected word is replaced with one hypernym at a time: <br>Sentence: <br>Hypernyms: ")
                gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], description="Word suggestions - Analyse the unique words in infranodus")
                gr.Interface(fn=WikiSearch, inputs="text", outputs="text", description="One word at a time Unique word suggestions (wiki articles)")
            with gr.Tab("Automating related information linking"):
                gr.HTML("Questions - Taking and suggesting questions to ask = new education --> Esp. Infranodus type outer discourse identification as question generation")
                gr.HTML("The point of reading is to refine future actions especially problem solving --> Creating problem scenarios = thinking ahead of time = One form of effective reading")
        with gr.Tab("Beginner - Vague Language and Guessing POS"):
            with gr.Row():
                gr.HTML("Some Vague Words - Quantifiers, Pronouns, etc. <br/> <br/> Very, Many, Few, Lots,  <br> Lets add 40 words to this list <br>  <hr> Find Replace all nouns with something/someone or and for verbs figure out how to generalise them")
                gr.HTML("Parts of speech recognition = comprehension <br> Three word sentences will give a easier guessing chance")
            gr.HTML('<iframe src="https://spacy-gradio-pipeline-visualizer.hf.space" frameborder="0" width="100%" height="600"></iframe>')
        with gr.Tab("Advanced - Making Questions = Reading"):
            gr.HTML("Some Example Prompts (Even Mistral 7b is good at this) <br><br>Please make a comprehension test for the following: <br>Please make 10 questions baseed on this text: <br>")
            with gr.Row():
                gr.TextArea("Paste the text to read here", interactive=True)
                gr.TextArea("Make as many questions on the text as you can in native language and then translate", interactive=True)
            gr.Dropdown(["Placeholder chunk 1", "Placeholder chunk 2", "Placeholder chunk 3"])
            gr.HTML("Load the current chunk here and Put a Dataframe where you have only one column for the questions")
            gr.HTML(""" Some considerations for questions to make
Please continue this sentence Types of knowing something = verbatim recall, differences, characteristics, definition of the item, definitions of the items related

<br><br>Mistral-Medium:
Sure! Here are some additional types of knowing something:

Causes and effects: Understanding the causes and effects of a concept or phenomenon can help deepen your knowledge and make it more applicable to real-world situations.
Examples and non-examples: Providing examples and non-examples of a concept can help clarify its meaning and distinguish it from similar concepts.
Analogies and metaphors: Using analogies and metaphors can help make abstract concepts more concrete and easier to understand.
Principles and theories: Understanding the principles and theories that underlie a concept can help you see how it fits into a broader framework of knowledge.
Applications and implications: Understanding the practical applications and implications of a concept can help you see its relevance and importance in real-world contexts.
Historical and cultural context: Understanding the historical and cultural context in which a concept developed can provide valuable insights into its meaning and significance.
Overall, there are many different types of knowing, and each one can contribute to a more complete and nuanced understanding of a topic. By using a variety of approaches and strategies, you can deepen your knowledge and improve your ability to apply it in meaningful ways.  

<br><br>GPT-4 Turbo:
Please continue this sentence Types of knowing something = verbatim recall, differences, characteristics, definition of the item, definitions of the items related

Types of knowing something can include verbatim recall, understanding differences, recognizing characteristics, defining the item, and understanding definitions of related items. Beyond these aspects, knowing can also encompass:

Application: The ability to use the information in new and concrete situations. This involves applying rules, methods, concepts, principles, laws, and theories.

Analysis: The capability to break down material into its constituent parts and understand its organizational structure. This includes recognizing the relationships between the parts and the overall structure and purpose.

Synthesis: The skill to put parts together to form a new whole. This could involve creating a new pattern, proposing alternative solutions, or deriving a new set of abstract relations.

Evaluation: Making judgments about the value of ideas or materials. This requires forming opinions and making decisions based on criteria and standards through checking and critiquing.

Procedural Knowledge: Knowing how to do something, which involves procedural steps or actions required to perform a task or solve a problem.

Conditional Knowledge: Understanding when to use certain knowledge, which involves recognizing the applicability of a skill or concept in various contexts.

Metacognitive Knowledge: This is a higher-order type of knowing, which involves awareness and understanding of one's own thought processes. It includes the ability to monitor, regulate, and direct oneself to a desired end, like learning or problem-solving.

Tacit Knowledge: This is the kind of knowledge that is difficult to transfer to another person by writing it down or verbalizing it. It is acquired through personal experience and context, often without conscious awareness.

Explicit Knowledge: In contrast to tacit knowledge, explicit knowledge is that which can be articulated, codified, accessed and verbalized. It can be readily transmitted to others.

Intuitive Knowledge: This refers to understanding or believing something instinctively without the need for conscious reasoning. It's often experienced as a 'gut feeling' or an 'aha' moment that comes seemingly out of nowhere.

Each type of knowing involves different cognitive processes and levels of understanding. The depth and breadth of one's knowledge often depend on the ability to combine these various types of knowing effectively.   
            """)
   
        with gr.Tab("Transition is the end goal (SOV, SVO, VSO)"):
            gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text", description="Chunks creator")
            with gr.Row():
                with gr.Column():
                    gr.Interface(fn=AutoSyllablePractice, inputs="text", outputs="text", description="One Word At A Time | Audio Spelling Practice Using vowels as the seperator")
                    gr.Textbox("A word is a list of letter as a fact is a list of words. Both are in a specific order. What is most important is practice the order so randomiser is the tool", lines=4)
                    gr.Interface(fn=RandomiseTextbyType, inputs=["text", RandomiseTextType], outputs="text", description="Randomise order within words, sentences, paragrahs")
                with gr.Column():
                #with gr.Tab("Collocations (Markov)"):
                    gr.HTML("Transition is the true nature of logic i.e. like some form of non-semantic embedding that is semantic?")
                    gr.Interface(fn=build_model, inputs="text", outputs=["text", "text"], description="Create Collocation Dictionary --> Google Kathryn Lingel - Pyambic Pentameter Example - PyCon US for more")
                    gr.Interface(fn=markov_generate, inputs=["text", Markovlength], outputs="text", description="Generate Text based on the collocations in the text")
                with gr.Column():
                #with gr.Tab("Spelling + Chunks"):
                    gr.Textbox("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access", lines=3)  
                    gr.HTML("<p> Spell multiple words simultaneously for simultaneous access </p> <p> Spelling Simplification - Use a dual language list? | Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
                    gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
                    gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", description="Noun and Verbs only (Plus punctuation)")          
        with gr.Tab("Knowledge Ideas - Notetaking"):
            gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
            <p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
            <p>Big Picture = Expand the Heading and the subheadings and compare them to each other</p>
            <p>Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first</p>
            """)
            gr.Label('Placeholder for LLM api plus the drop down function below populate text for each line into dropdowns')
            gr.Interface(fn=TextCompFormat, inputs=["textarea", HTMLCompMode], outputs="text", description="Convert Text to HTML Dropdown or Links which you paste in any html file")    
            gr.Interface(fn=create_collapsiblebutton, inputs=["textbox", "textbox", "textarea"], outputs="textbox", description="Button and Div HTML Generator, Generate the HTML for a button and the corresponding div element.")
        with gr.Tab("Real-Time AI - Video/Audio/AR"):
                gr.HTML("<div style='display: flex; justify-content: center; align-items: center; height: 100%;'> Agents = Custom Software (Personalised UI and Mods, among other things) = Custom Environments (AR)  <a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter -- </a> | <a href='https://github.com/microsoft/autogen'> -- Microsoft Autogen -- </a> | </div>")
                gr.HTML("Raspberry Pi / Pydroid and OpenCV and Tkinter = Frontend for OpenAI / OSS vision API as ChatGPT doesnt support video / real-time screenshot yet")
                gr.HTML("HUD Experiment (Waiting for GPT4V API) - Full context of user situation + Ability to communicate in real-time to user using images (H100+ and low enough resolution and low enough steps - it/s = fps) - just like google maps but for real life")
                gr.HTML("Some sample Open Interpreter Code - https://huggingface.co/spaces/ysharma/open-interpreter/blob/main/app.py")
                gr.Interface(fn=ImageTranslationTest , inputs=[VideoTestInput, VideoTestSubtitleInput], outputs="video")
                with gr.Accordion("STT Spaces (sanchit-gandhi spaces have microphone input)"):
                    Whisperspaceoptions = gr.Dropdown(choices=["https://facebook-seamless-m4t-v2-large.hf.space", "https://hf-audio-whisper-large-v3.hf.space", "https://sanchit-gandhi-whisper-jax-diarization.hf.space", "https://sanchit-gandhi-whisper-jax.hf.space", "https://sanchit-gandhi-whisper-large-v2.hf.space", "https://facebook-seamless-m4t.hf.space"], label="existing whisper spaces")
                    Whisperspaceoptionsbtn = gr.Button("Load Whisper Space")
                    WhisperspaceoptionsOut = gr.HTML()                    
                    Whisperspaceoptionsbtn.click(fn=display_website, inputs=Whisperspaceoptions, outputs=WhisperspaceoptionsOut)
                with gr.Accordion("Image as prompt Spaces"):
                    Imagepromptspaceoptions = gr.Dropdown(choices=["https://otter-ai-otterhd-demo.hf.space", "https://adept-fuyu-8b-demo.hf.space", "https://badayvedat-llava.hf.space", "https://xinyu1205-recognize-anything.hf.space"], label="existing Image prompt spaces")
                    Imagepromptspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
                    ImagepromptspaceoptionsOut = gr.HTML()                    
                    Imagepromptspaceoptionsbtn.click(fn=display_website, inputs=Imagepromptspaceoptions, outputs=ImagepromptspaceoptionsOut)
                gr.HTML("Video Dubbing - <a href='https://huggingface.co/spaces/artificialguybr/video-dubbing'> -- artificialguybr's video dubbing -- </a> | <br> Real Time video dubbing will be a true gamechanger")
                with gr.Accordion("Old Ideas to consider", open=False):
                    gr.HTML("Nicolai Nielsen Youtube channel - aruco markers = position --> can test using premade ones from an image search")
                    gr.Textbox("Alpha Test version = Real time Lablling of All things in view using SAM and Clip Interrogator and OpenCV on pydroid --> Adjusted Demo")
                    gr.HTML("Some Prompt ideas --> Prompt: Describe the place where these descriptions may be (You job is to be speculative for brainstorming purposes): A dog and a boy, the area is texas, the weather is sunny, the date is 01 May 2021 <hr> Prompt Content Ideas Ideas Clip Interrogator + Location Data aka tags for place, location and time + general news updates on the location + overview of the items in the location  <br> Location based advise is most important but after that is information observed by appliances in the location eg. Times Computer turned on, times geyser inspected, amount of time keys havent been touched etc. <br> each location will have an ai personality that will relay more information ")
                    gr.HTML("<a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a>")
        with gr.Tab("Incomplete Tests and Experiments"):
            with gr.Tab("Multi Output and other ideas"): 
                gr.HTML("<span style:{'fontsize: 20'}>Start at Unkown Tracker if unseure<span> <br> UNNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know <br><br> General Ideas in this space - Speed of Learning = Avoid Things you know like the plague -- How to track what you know -- Counter is easiest and How you feel is the hardest (The more you know, the more confusion on what you dont know as you probably werent keeping track) <br><br> Visulisation of long text - Bottom of this page  <br> Wordlist - 1 new word at a time per minute in the space to the left  <br> Youtube Video Watching - Subtitles Tab <br> Reading - Unknown Tracker Tabs <br> Longer Text Memorising - Acronym Map Creation Tab and Transition Tab <br> Brainstorming - Reading Assistant <br> Random Exposure <br> ")
                gr.Interface(fn=MultiOutputInterface, inputs=TestSplitandUpdateinput, outputs=["button", "text", "text", "text", "text", "text", "text", "text", "text", "text"])
            with gr.Tab("Order based Forcing content into time (Time is the bottleneck)"):
                gr.Label("Inspect the Transition Tab last item in left most column - RandomiseTextbyType - Incomplete, but this plus timer will work well achieve what this space aims to achieve - LLMs would choose the next set of words based on the last batch and its knowledge of your vocab level or even your current location (using phone as sensors) and can make image/audio prompts to make more engaging")
                gr.Label("Placeholder for take in list and return 10 items in correct order for 20 seconds and 20 seconds to assign order to each word using numbers input - generator with blocks 20 seconds to understand what was wrong and move on")
                gr.Label("Placeholder for long text version as well - Order of the sentence or sentence spans (spacy) is what is what most important in long text - you cant organise you dont know")
            with gr.Tab("Repetition Injected Text"):
                gr.Label("Optimal Study Reps is inbetween new information acquisition - i.e. any thing you havent read already")
                gr.Interface(fn=RepititionInjectedReading, inputs=[Repsplitdropdown, "text", "text"], outputs="text")
            with gr.Tab("Graph Based Reading", id="1"):
                gr.Textbox('Parts of Speech based | Automating the Notetaking Tab either directly or using visual llm to use this interface efficiently')
                gr.HTML("Types of comprehension agent <hr> Speed of Comprehension = Verb comprehension <br> From the following please extract the verbs <br> now explain each in context <br> Next, use picture descriptions for each word in the verb list <br> Create combinations using the verb list <hr> ")
                gr.HTML("How VERBS RELATE TO EACH OTHER --> Shared Nodes - what other verbs are connected to the noun in a INFRANODUS With POS Tag filters")
                gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")        
                gr.HTML("Sentence to PyDot graph")
                gr.HTML("Currently a bug that locks all buttons in the space when you use this above example - Reload to fix")
            with gr.Tab("Random Ideas"):
                gr.HTML("<hr>(Part to be formatted as System prompt for model used as the help admin for the app) Objective - Learn vocab from video/music and have record of how far you got using as overengineered solution (to keep upto date with SOTA AI models and use cases) <br>Current Workflow = One Youtube video as focus for a week or until learned (i.e. instant recognition recall of vocab in random order exposure) <br>Timeline Brainstorm = Know Nothing (Just need Exposure - Random 10% suggesed as starting point) --- Know a little (Remove known) --- Know half (UNNWFWO) <hr> ")
                gr.HTML("""<p>Spaces Test - Still Undercontruction   --> Next Milestone is Turning this interface handsfree | Knowledge is a Language but productive knowledge is find replace as well | LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? --> Questions? -->  
                <p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p> """)
                gr.HTML("<p>Target 0: Mnemonics as title of images --> Comprehensible input <br>  Target 1: Dual audio at word Level while using repitition to train random recall --> Word level Time <br> Target 2: Video --> Split by sentence --> each word repeated (60) + each phrase (10) + each sentence (10) --> TTS file for practice --> State Management/Known word Tracker <br>-----------------------<br> The trick is minimum one minute of focus on a new word --> Listening is hard because there are new word within seconds and you need repeated focus on each to learn </p> <p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p> <p>Listening is hard due to different word order and word combinations (collocations more important than single words)</p> <hr>")
                gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
                gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
            with gr.Tab("AI Tools, Prompts and games"):
                gr.HTML("TODO = Llama-cpp-python with falcon 7b / openllama 7b intergrated into each of the interfaces in this space aka --> interfaces as tools for open source llm <br><br> <b>Test using gradio space/interfaces through the api as function calls for gpt3.5 and 4</b>")
                with gr.Accordion('Command Based Tools - Instant verification of ability to describe'):
                    gr.HTML("Roblox - <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <br>  ")
            #with gr.Tab("Gradio Client Tests"):
            #    gr.HTML("How to return componets here in gradio (as each client interface needs different inputs) like in react")
            with gr.Tab("Current Ideas to edit old sections"):
                gr.HTML("The core themes = scheduling (randomisation and calendar marking), speed practice, visualisation, and audio, repitition, compression and finally Tracking and only learning the unknown")
                gr.HTML("Parts that are already done - Repition and scheduling (randomisation) on the sidebar, compresion using the acronym tab, Audio in the beginning tab, unknown partially in HTML creator")
                gr.HTML("Parts that are not done - Visualisation (of acronyms / duo word sets / nouns and verbs) - The image placeholder creator script, Tracking (private = database, public = textfile export), calendar based scheduling aka alert based  ")
                gr.HTML("React Version of the app can combine all of these use cases into one component - so far tracking, placeholder and partially scheduling have been done")
                gr.Label('True speed simultaneous - which is a boolean state = practice at simulataneous to get simultaneous  |||| Another way to be fast is to practice simultaneously with the varios SOVs i.e. when you read a noun the verb must appear immediately and vice versa |||| Simultaneous Spelling is the other way to practice |||| The main goal of all reading is that next time you read you take less time this time: |||| Spped = ability to anticipate the next word |||| Anticipation of a sentence = POV ||||  ')
            with gr.Tab("Text to image for only nouns "):
                gr.Label("Placeholder for the transformers code Generator that can be used by anyone with gpu to turn all nouns in their text to pictures (The lambda labs code)")
            with gr.Tab("Simultanoues Practice Zone"):
                gr.Label("Audio based space where you must look at the corresponding text for the audio thats playing as simultaneous practice")
                gr.DataFrame(None, headers=["text", "audio"], label="Add text pairs to practice", interactive=True)
                gr.HTML("Below you can create and listen to the audio")
                gr.Interface(fn=SimultaneousSpellingPrac, inputs=["text"], outputs=["text"], title="Simultaneous SpellingOrder fast fast practice --> 1 letter a word = fastest read")
                gr.Interface(fn=FirstLetterSummary, inputs=["text"], outputs=["text"], title="Order fast fast practice --> 1 letter a word = fastest read")
                gr.Interface(fn=imagebasedreading, inputs=["text"], outputs=["file", "html", "text"], title="Placeholder for every newline")
            with gr.Tab("Long Text Analysis"):
                gr.HTML("For Long text searches are useful under time pressure and also bring all direct interactions with search terms - a word is defined by those around it")
                gr.Label("Placeholder for old code for concordance and word counting in other test space")    
            with gr.Tab("Video Segmentation with OpenCV Test"):
                gr.Interface(fn=segment_video_with_opencv, inputs=VideoSplitTestInput, outputs=SplitVideoOutput, description="Split video into even increments for better study tracking ")
            with gr.Tab("State Management and Education"):
                gr.HTML("Education = Learning things you didnt know yesterday and not forgetting more than you learn <br><br> What you didnt know forms = <br> Glossary <br> Lists <br> Formulas <br> graphs <br> Procedures <br> <br> for each you will need a seperate way to track the progress but amount of times + recency = approximate state ")
            with gr.Tab('Acronym Map Creation Space'):
                gr.HTML("Acronym cant be read with previous attentive reading - accurate measure of known vs unknown")
                with gr.Row():
                    with gr.Accordion('Acronym Map/Skeleton Creator'):
                        gr.HTML("Moved to Progress for now")
                    with gr.Accordion('Test with LLM'):
                        gr.Label('Letters are always easier to recall than whole words. GPT 4 and above best suited for this prompt but can test anywhere')
                        gr.HTML('Please help me study by making a acronym map for the maths ontology (Ask if theres questions)')
                        gr.TextArea('', label='Paste LLM response')
                        gr.HTML('Good but we need to now create a 9 Acronym based words - 1 for the headings together and then one each for the subheadings')
                        gr.TextArea('', label='Paste LLM response')
                with gr.Accordion(''):
                    gr.HTML('If study content was a map the first letters shape of the whole text = Roads')
                    gr.HTML('Known = ability to match an item to a retrieval cue instantly - Retrieval cue for the whole text = Acronym Map')
            with gr.Tab("Thinking Practice (POS)"):
                gr.HTML("By removing all nouns and verbs you get a format to practice thinking about your words to use to make sentences which make sense within constraints")      
                with gr.Row():
                    with gr.Column():
                        with gr.Tab("Sentence to Practice Format"):
                            gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], description="Comprehension reading and Sentence Format Creator")
                    with gr.Column():    
                        gr.HTML("<a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> |")
                        gr.Textbox(label='Use this text to hold translations of the SQL rows in the above linked dataset (A kind of What I say vs what I want)')
                

lliface.queue().launch() #(inbrowser="true")