File size: 5,227 Bytes
fc1301c
 
 
 
 
 
 
 
 
 
 
 
 
 
75a15fb
fc1301c
75a15fb
fc1301c
 
75a15fb
fc1301c
 
f0305cc
fc1301c
 
 
 
8705a13
fc1301c
 
 
 
 
 
75a15fb
 
fc1301c
 
 
 
 
 
 
75a15fb
fc1301c
 
 
 
 
 
811b009
fc1301c
 
 
 
 
 
 
 
 
 
 
 
811b009
 
 
 
 
 
 
fc1301c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8705a13
fc1301c
8705a13
811b009
fc1301c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0305cc
fc1301c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512

DESCRIPTION = """\
# OpenELM-3B-Instruct

This Space demonstrates [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple. Please, check the original model card for details.
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM)
The following Colab notebooks are available:
* [OpenELM-3B-Instruct (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0)
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4)

You might also be interested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file).

If you duplicate this space, make sure you have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
because this model uses it as a tokenizer.

# Note: Use this model for only for completing sentences and instruction following.
"""

LICENSE = """
<p/>

---
As a derivative work of [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple,
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B-Instruct/blob/main/LICENSE).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "apple/OpenELM-3B-Instruct"    
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
    tokenizer_id = "meta-llama/Llama-2-7b-hf"
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
    if tokenizer.pad_token == None:
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model.config.pad_token_id = tokenizer.eos_token_id

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.4,
) -> Iterator[str]:
    
    historical_text = ""
    #Prepend the entire chat history to the message with new lines between each message
    for user, assistant in chat_history:
        historical_text += f"\n{user}\n{assistant}"
        
    if len(historical_text) > 0:
        message = historical_text + f"\n{message}"
    input_ids = tokenizer([message], return_tensors="pt").input_ids
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        pad_token_id = tokenizer.eos_token_id,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=5,
        early_stopping=False,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.4,
        ),
    ],
    stop_btn=None,
    examples=[
        ["A recipe for a chocolate cake:"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["Question: What is the capital of France?\nAnswer:"],
        ["Question: I am very tired, what should I do?\nAnswer:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()