Spaces:
Runtime error
Runtime error
File size: 2,954 Bytes
4997aeb da863bf 4997aeb 8eb3e51 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb 8ce3d9b 4997aeb 8ce3d9b 4997aeb 9eb3e78 8ce3d9b 9eb3e78 8ce3d9b 9eb3e78 8ce3d9b 9eb3e78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
import os
from streamlit_chat import message
# from datasets import load_dataset
# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]")
# wikidata = []
# for record in dataset:
# wikidata.append(record["text"])
# wikidata = list(set(wikidata))
# # print("\n".join(wikidata[:5]))
# # print(len(wikidata))
from sentence_transformers import SentenceTransformer
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device != 'cuda':
st.text(f"you are using {device}. This is much slower than using "
"a CUDA-enabled GPU. If on colab you can chnage this by "
"clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
st.divider()
# Creating a Index(Pinecone Vector Database)
import os
import pinecone
from pinecone import Index, GRPCIndex
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
def connect_pinecone():
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
st.code(pinecone)
st.divider()
st.text(pinecone.list_indexes())
st.divider()
st.text(f"Succesfully connected to the pinecone")
return pinecone
def get_pinecone_semantic_index(pinecone):
index_name = "sematic-search"
# only create if it deosnot exists
if index_name not in pinecone.list_indexes():
pinecone.create_index(
name=index_name,
description="Semantic search",
dimension=model.get_sentence_embedding_dimension(),
metric="cosine",
)
# now connect to index
index = pinecone.GRPCIndex(index_name)
st.text(f"Succesfully connected to the pinecone")
return index
def chat_actions():
pinecone = connect_pinecone()
index = get_pinecone_semantic_index(pinecone semantic index)
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
response = model.encode(st.session_state["chat_input"])
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": response.text,
}, # This can be replaced with your chat response logic
)
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input("Enter your message", on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])
### Creating a Index(Pinecone Vector Database)
# %%writefile .env
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
import os
import pinecone
from pinecone import Index, GRPCIndex
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
st.text(pinecone)
|