Spaces:
Runtime error
Runtime error
File size: 7,435 Bytes
4997aeb da863bf 3ae066d 0bff6fd 940c185 f06193e a1f90e6 9c2d532 4997aeb 0fb4cf5 4997aeb 8eb3e51 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb 2da6f20 4997aeb e496258 4997aeb 8ce3d9b 4997aeb 9eb3e78 11bc07e 9eb3e78 dcca063 9eb3e78 79497a3 c9dd21c 9eb3e78 2376b2f 64523d8 9eb3e78 c9dd21c 9eb3e78 c9dd21c 9eb3e78 f76455a 64523d8 9eb3e78 a1f90e6 38e40b5 a1f90e6 abef2ac a1f90e6 8ce3d9b 9eb3e78 5d2299c 9eb3e78 8ce3d9b dcb00f7 3d67d69 dcb00f7 a1f90e6 a969331 a1f90e6 a969331 c2e5bed a969331 87a8ef2 a969331 909aec0 64523d8 e488916 a1f90e6 544f3f0 150b8d9 909aec0 a969331 909aec0 6725ef7 8ce3d9b 23247c4 8ce3d9b 9eb3e78 dcca063 9eb3e78 dcca063 9eb3e78 dcca063 940c185 8a3a5d7 940c185 f06193e 80682f3 f06193e 80682f3 f06193e ec7fc78 609ef88 ec7fc78 609ef88 ec7fc78 6e57cc9 d34a703 792de2f 7a0f54c a1f90e6 792de2f 61c3232 ec7fc78 7d43644 39dae03 7d43644 940c185 609ef88 ec7fc78 6e57cc9 a1f90e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import streamlit as st
import os
from streamlit_chat import message
import numpy as np
import pandas as pd
from io import StringIO
import PyPDF2
from tqdm import tqdm
import math
from transformers import pipeline
# import json
# st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
# from datasets import load_dataset
# dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]")
# wikidata = []
# for record in dataset:
# wikidata.append(record["text"])
# wikidata = list(set(wikidata))
# # print("\n".join(wikidata[:5]))
# # print(len(wikidata))
from sentence_transformers import SentenceTransformer
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device != 'cuda':
st.markdown(f"you are using {device}. This is much slower than using "
"a CUDA-enabled GPU. If on colab you can change this by "
"clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
st.divider()
# Creating a Index(Pinecone Vector Database)
import os
# import pinecone
from pinecone.grpc import PineconeGRPC
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
PINECONE_ENV=os.getenv("PINECONE_ENV")
PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
# pc = PineconeGRPC( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) )
def connect_pinecone():
pinecone = PineconeGRPC(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
# st.code(pinecone)
# st.divider()
# st.text(pinecone.list_indexes().names())
# st.divider()
# st.text(f"Succesfully connected to the pinecone")
return pinecone
def get_pinecone_semantic_index(pinecone):
index_name = "sematic-search"
# only create if it deosnot exists
if index_name not in pinecone.list_indexes().names():
pinecone.create_index(
name=index_name,
description="Semantic search",
dimension=model.get_sentence_embedding_dimension(),
metric="cosine",
spec=ServerlessSpec( cloud='gcp', region='us-central1' )
)
# now connect to index
index = pinecone.Index(index_name)
# st.text(f"Succesfully connected to the pinecone index")
return index
def promt_engineer(text):
prompt_template = """
write a concise summary of the following text delimited by triple backquotes.
return your response in bullet points which convers the key points of the text.
```{text}```
BULLET POINT SUMMARY:
"""
# Load the summarization pipeline with the specified model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Generate the prompt
prompt = prompt_template.format(text=text)
# Generate the summary
summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
with st.sidebar:
st.write(summary)
def chat_actions():
pinecone = connect_pinecone()
index = get_pinecone_semantic_index(pinecone)
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
query_embedding = model.encode(st.session_state["chat_input"])
# create the query vector
query_vector = query_embedding.tolist()
# now query vector database
result = index.query(query_vector, top_k=5, include_metadata=True) # result is a list of tuples
# Create a list of lists
data = []
consolidated_text = ""
i = 0
for res in result['matches']:
i = i + 1
data.append([f"{i}⭐", res['score'], res['metadata']['text']])
consolidated_text += f"{res['metadata']['text']}\n\n"
# Create a DataFrame from the list of lists
resdf = pd.DataFrame(data, columns=['TopRank', 'Score', 'Text'])
with st.sidebar:
st.markdown("*:red[semantic search results]* with **:green[Retrieval Augmented Generation]** ***(RAG)***.")
st.dataframe(resdf)
promt_engineer(consolidated_text)
for res in result['matches']:
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": f"{res['metadata']['text']}",
}, # This can be replaced with your chat response logic
)
break;
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input("show me the contents of ML paper published on xxx with article no. xx?", on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])
### Creating a Index(Pinecone Vector Database)
# %%writefile .env
# PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")
# PINECONE_ENV=os.getenv("PINECONE_ENV")
# PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT")
# import os
# import pinecone
# from pinecone import Index, GRPCIndex
# pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
# st.text(pinecone)
def print_out(pages):
for i in range(len(pages)):
text = pages[i].extract_text().strip()
st.write(f"Page {i} : {text}")
def combine_text(pages):
concatenates_text = ""
for page in tqdm(pages):
text = page.extract_text().strip()
concatenates_text += text
bytesize = concatenates_text.encode("utf-8")
p = math.pow(1024, 2)
mbsize = round(len(bytesize) / p, 2)
st.write(f"There are {len(concatenates_text)} characters in the pdf with {mbsize}MB size")
def create_embeddings():
# Get the uploaded file
with st.sidebar:
uploaded_files = st.session_state["uploaded_files"]
for uploaded_file in uploaded_files:
# Read the contents of the file
reader = PyPDF2.PdfReader(uploaded_file)
pages = reader.pages
print_out(pages)
combine_text(pages)
st.write("created_embeddings")
# Display the contents of the file
# st.write(file_contents)
with st.sidebar:
st.markdown("""
***Follow this steps***
- upload pdf file to create embeddings using model on your own docs
- wait see success message on embeddings creation
- It Takes couple of mins after upload the pdf
- Now Chat with model to get the summarized info
- Generate Promted reponses on the upload pdf
- Provides summarized results and QA's using GPT models
""")
uploaded_files = st.file_uploader('Choose your .pdf file', type="pdf", accept_multiple_files=True, key="uploaded_files", on_change=create_embeddings)
# for uploaded_file in uploaded_files:
# To read file as bytes:
# bytes_data = uploaded_file.getvalue()
# st.write(bytes_data)
# To convert to a string based IO:
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
# st.write(stringio)
# To read file as string:
# string_data = stringio.read()
# st.write(string_data)
# Can be used wherever a "file-like" object is accepted:
# dataframe = pd.read_csv(uploaded_file)
# st.write(dataframe)
# reader = PyPDF2.PdfReader(uploaded_file)
# pages = reader.pages
# print_out(pages)
# combine_text(pages)
# promt_engineer(text)
|