File size: 6,291 Bytes
c9e69f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfbab3
c9e69f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfbab3
c9e69f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfbab3
c9e69f1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
from huggingface_hub import login
import yt_dlp as youtube_dl
import gradio as gr
import tempfile
import spaces
import torch
import time
import os

login(os.environ["HF"], add_to_git_credential=True)

BATCH_SIZE = 16
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "Kushtrim/whisper-base-shqip"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, use_safetensors=True, token=True).to(device)
processor = AutoProcessor.from_pretrained(model_id, token=True)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
                chunk_length_s=30, torch_dtype=torch_dtype, device=device,
                token=os.environ["HF"])

# pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
#                 max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device,
#                 token=os.environ["HF"])

@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error(
            "No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, generate_kwargs={
                "task": task, 'language': 'sq'}, return_timestamps=True)["text"]
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()

    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]

    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]

    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime(
            "%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime(
            "%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")

    ydl_opts = {"outtmpl": filename,
                "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, task, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs,
              "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={
                "task": task}, return_timestamps=True)["text"]

    return html_embed_str, text


demo = gr.Blocks()

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
        gr.Radio(choices=["transcribe"], label="Task"),
    ],
    outputs="text",
    title="Whisper Base Shqip: Transcribe Audio",
    description=(
        "Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
        f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
        "powered by πŸ€— Transformers. With just a click, transform microphone or audio file inputs of any length into "
        "text with exceptional transcription quality."
    ),
    allow_flagging="never",
)

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources=["microphone"], type="filepath"),
        gr.Radio(choices=["transcribe"], label="Task"),
    ],
    outputs="text",
    title="Whisper Base Shqip: Transcribe Audio",
    description=(
        "Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
        f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
        "powered by πŸ€— Transformers. With just a click, transform microphone or audio file inputs of any length into "
        "text with exceptional transcription quality."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(
            lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Radio(choices=["transcribe"], label="Task")
    ],
    outputs=["html", "text"],
    title="Whisper Base Shqip: Transcribe Audio",
    description=(
        "Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
        f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
        "powered by πŸ€— Transformers. With just a click, transform microphone or audio file inputs of any length into "
        "text with exceptional transcription quality."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch()