Spaces:
Running
Running
File size: 6,291 Bytes
c9e69f1 ebfbab3 c9e69f1 ebfbab3 c9e69f1 ebfbab3 c9e69f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.pipelines.audio_utils import ffmpeg_read
from huggingface_hub import login
import yt_dlp as youtube_dl
import gradio as gr
import tempfile
import spaces
import torch
import time
import os
login(os.environ["HF"], add_to_git_credential=True)
BATCH_SIZE = 16
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "Kushtrim/whisper-base-shqip"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, use_safetensors=True, token=True).to(device)
processor = AutoProcessor.from_pretrained(model_id, token=True)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
chunk_length_s=30, torch_dtype=torch_dtype, device=device,
token=os.environ["HF"])
# pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor,
# max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device,
# token=os.environ["HF"])
@spaces.GPU
def transcribe(inputs, task):
if inputs is None:
raise gr.Error(
"No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, generate_kwargs={
"task": task, 'language': 'sq'}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime(
"%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename,
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs,
"sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={
"task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["upload"], type="filepath", label="Audio file"),
gr.Radio(choices=["transcribe"], label="Task"),
],
outputs="text",
title="Whisper Base Shqip: Transcribe Audio",
description=(
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into "
"text with exceptional transcription quality."
),
allow_flagging="never",
)
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["microphone"], type="filepath"),
gr.Radio(choices=["transcribe"], label="Task"),
],
outputs="text",
title="Whisper Base Shqip: Transcribe Audio",
description=(
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into "
"text with exceptional transcription quality."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Radio(choices=["transcribe"], label="Task")
],
outputs=["html", "text"],
title="Whisper Base Shqip: Transcribe Audio",
description=(
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned "
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, "
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into "
"text with exceptional transcription quality."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch()
|