Spaces:
Runtime error
Runtime error
File size: 16,103 Bytes
f9c4e37 f0ec2f0 05cbda5 f9c4e37 90790ea f9c4e37 ba53076 f9c4e37 ba53076 f9c4e37 39b488c f9c4e37 39b488c f9c4e37 ba53076 88d26a2 a0ee85f ba53076 459a249 0e76ca0 f288790 459a249 ba53076 f288790 459a249 ba53076 f288790 459a249 ba53076 f288790 459a249 ba53076 0e76ca0 8851fb5 e4d1ed2 8748eeb 931adb9 68fc027 931adb9 88d26a2 e7e90f8 88d26a2 931adb9 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 88d26a2 ba53076 e4d1ed2 ba53076 88d26a2 ba53076 68fc027 ba53076 68fc027 ba53076 f9c4e37 ba53076 88d26a2 e4d1ed2 72808b9 e4d1ed2 88d26a2 ba53076 68fc027 ba53076 e4d1ed2 68fc027 ba53076 2060744 f9c4e37 8748eeb 3fa4852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import sys
import torch
import diffusers
import transformers
import argparse
import peft
import copy
import cv2
import spaces
import gc
import gradio as gr
import numpy as np
from flash_attn import flash_attn_func
from peft import LoraConfig
from omegaconf import OmegaConf
from safetensors.torch import safe_open
from PIL import Image, ImageDraw, ImageFilter
from huggingface_hub import hf_hub_download
from transformers import pipeline
from models import HunyuanVideoTransformer3DModel
from pipelines import HunyuanVideoImageToVideoPipeline
header = """
# DRA-Ctrl Gradio App
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://arxiv.org/abs/2505.23325"><img src="https://img.shields.io/badge/ariXv-Page-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Space-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
</div>
"""
notice = """
For easier testing, in spatially-aligned image generation tasks, when passing the condition image to `gradio_app`,
there's no need to manually input edge maps, depth maps, or other condition images - only the original image is required.
The corresponding condition images will be automatically extracted.
"""
def init_basemodel():
global transformer, scheduler, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, image_processor, pipe, current_task
pipe = None
current_task = None
# init models
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.bfloat16
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="transformer",
inference_subject_driven=False,
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
scheduler = diffusers.FlowMatchEulerDiscreteScheduler()
vae = diffusers.AutoencoderKLHunyuanVideo.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="vae",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
text_encoder = transformers.LlavaForConditionalGeneration.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
text_encoder_2 = transformers.CLIPTextModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder_2",
low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
torch.cuda.empty_cache()
gc.collect()
tokenizer = transformers.AutoTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer")
tokenizer_2 = transformers.CLIPTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer_2")
image_processor = transformers.CLIPImageProcessor.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="image_processor")
vae.enable_tiling()
vae.enable_slicing()
pipe = HunyuanVideoImageToVideoPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=copy.deepcopy(scheduler),
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
image_processor=image_processor,
)
@spaces.GPU
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2):
# set up the model
global pipe, current_task, transformer
if current_task != task:
if current_task is None:
# insert LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=16,
init_lora_weights="gaussian",
target_modules=[
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2',
'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear',
'norm.linear', 'proj_mlp', 'proj_out',
]
)
transformer.add_adapter(lora_config)
else:
def restore_forward(module):
def restored_forward(self, x, *args, **kwargs):
return module.original_forward(x, *args, **kwargs)
return restored_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = restore_forward(m)
current_task = task
# hack LoRA forward
def create_hacked_forward(module):
if not hasattr(module, 'original_forward'):
module.original_forward = module.forward
lora_forward = module.forward
non_lora_forward = module.base_layer.forward
img_sequence_length = int((512 / 8 / 2) ** 2)
encoder_sequence_length = 144 + 252 # encoder sequence: 144 img 252 txt
num_imgs = 4
num_generated_imgs = 3
num_encoder_sequences = 2 if task in ['subject_driven', 'style_transfer'] else 1
def hacked_lora_forward(self, x, *args, **kwargs):
if x.shape[1] == img_sequence_length * num_imgs and len(x.shape) > 2:
return torch.cat((
lora_forward(x[:, :-img_sequence_length*num_generated_imgs], *args, **kwargs),
non_lora_forward(x[:, -img_sequence_length*num_generated_imgs:], *args, **kwargs)
), dim=1)
elif x.shape[1] == encoder_sequence_length * num_encoder_sequences or x.shape[1] == encoder_sequence_length:
return lora_forward(x, *args, **kwargs)
elif x.shape[1] == img_sequence_length * num_imgs + encoder_sequence_length * num_encoder_sequences:
return torch.cat((
lora_forward(x[:, :(num_imgs - num_generated_imgs)*img_sequence_length], *args, **kwargs),
non_lora_forward(x[:, (num_imgs - num_generated_imgs)*img_sequence_length:-num_encoder_sequences*encoder_sequence_length], *args, **kwargs),
lora_forward(x[:, -num_encoder_sequences*encoder_sequence_length:], *args, **kwargs)
), dim=1)
elif x.shape[1] == 3072:
return non_lora_forward(x, *args, **kwargs)
else:
raise ValueError(
f"hacked_lora_forward receives unexpected sequence length: {x.shape[1]}, input shape: {x.shape}!"
)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
# load LoRA weights
model_root = hf_hub_download(
repo_id="Kunbyte/DRA-Ctrl",
filename=f"{task}.safetensors",
resume_download=True)
try:
with safe_open(model_root, framework="pt") as f:
lora_weights = {}
for k in f.keys():
param = f.get_tensor(k)
if k.endswith(".weight"):
k = k.replace('.weight', '.default.weight')
lora_weights[k] = param
transformer.load_state_dict(lora_weights, strict=False)
except Exception as e:
raise ValueError(f'{e}')
transformer.requires_grad_(False)
# start generation
c_txt = None if condition_image_prompt == "" else condition_image_prompt
c_img = condition_image.resize((512, 512))
t_txt = target_prompt
if task not in ['subject_driven', 'style_transfer']:
if task == "canny":
def get_canny_edge(img):
img_np = np.array(img)
img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(img_gray, 100, 200)
edges_tmp = Image.fromarray(edges).convert("RGB")
edges[edges == 0] = 128
return Image.fromarray(edges).convert("RGB")
c_img = get_canny_edge(c_img)
elif task == "coloring":
c_img = (
c_img.resize((512, 512))
.convert("L")
.convert("RGB")
)
elif task == "deblurring":
blur_radius = 10
c_img = (
c_img.convert("RGB")
.filter(ImageFilter.GaussianBlur(blur_radius))
.resize((512, 512))
.convert("RGB")
)
elif task == "depth":
def get_depth_map(img):
from transformers import pipeline
depth_pipe = pipeline(
task="depth-estimation",
model="LiheYoung/depth-anything-small-hf",
device="cpu",
)
return depth_pipe(img)["depth"].convert("RGB").resize((512, 512))
c_img = get_depth_map(c_img)
k = (255 - 128) / 255
b = 128
c_img = c_img.point(lambda x: k * x + b)
elif task == "depth_pred":
c_img = c_img
elif task == "fill":
c_img = c_img.resize((512, 512)).convert("RGB")
x1, x2 = fill_x1, fill_x2
y1, y2 = fill_y1, fill_y2
mask = Image.new("L", (512, 512), 0)
draw = ImageDraw.Draw(mask)
draw.rectangle((x1, y1, x2, y2), fill=255)
if inpainting:
mask = Image.eval(mask, lambda a: 255 - a)
c_img = Image.composite(
c_img,
Image.new("RGB", (512, 512), (255, 255, 255)),
mask
)
c_img = Image.composite(
c_img,
Image.new("RGB", (512, 512), (128, 128, 128)),
mask
)
elif task == "sr":
c_img = c_img.resize((int(512 / 4), int(512 / 4))).convert("RGB")
c_img = c_img.resize((512, 512))
gen_img = pipe(
image=c_img,
prompt=[t_txt.strip()],
prompt_condition=[c_txt.strip()] if c_txt is not None else None,
prompt_2=[t_txt],
height=512,
width=512,
num_frames=5,
num_inference_steps=num_steps,
guidance_scale=6.0,
num_videos_per_prompt=1,
generator=torch.Generator(device=pipe.transformer.device).manual_seed(random_seed),
output_type='pt',
image_embed_interleave=4,
frame_gap=48,
mixup=True,
mixup_num_imgs=2,
enhance_tp=task in ['subject_driven'],
).frames
output_images = []
for i in range(10):
out = gen_img[:, i:i+1, :, :, :]
out = out.squeeze(0).squeeze(0).cpu().to(torch.float32).numpy()
out = np.transpose(out, (1, 2, 0))
out = (out * 255).astype(np.uint8)
out = Image.fromarray(out)
output_images.append(out)
return output_images[1:] + [output_images[0]]
def create_app():
with gr.Blocks() as app:
gr.Markdown(header, elem_id="header")
with gr.Row(equal_height=False):
with gr.Column(variant="panel", elem_classes="inputPanel"):
condition_image = gr.Image(
type="pil", label="Condition Image", width=300, elem_id="input"
)
task = gr.Radio(
[
("Subject-driven Image Generation", "subject_driven"),
("Canny-to-Image", "canny"),
("Colorization", "coloring"),
("Deblurring", "deblurring"),
("Depth-to-Image", "depth"),
("Depth Prediction", "depth_pred"),
("In/Out-Painting", "fill"),
("Super-Resolution", "sr"),
("Style Transfer", "style_transfer")
],
label="Task Selection",
value="subject_driven",
interactive=True,
elem_id="task_selection"
)
gr.Markdown(notice, elem_id="notice")
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt (Only required by Subject-driven Image Generation and Style Transfer tasks)", elem_id="cp")
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
fill_x1 = gr.Number(label="In/Out-painting Box Left Boundary", precision=0, value=128, elem_id="fill_x1")
fill_x2 = gr.Number(label="In/Out-painting Box Right Boundary", precision=0, value=384, elem_id="fill_x2")
fill_y1 = gr.Number(label="In/Out-painting Box Top Boundary", precision=0, value=128, elem_id="fill_y1")
fill_y2 = gr.Number(label="In/Out-painting Box Bottom Boundary", precision=0, value=384, elem_id="fill_y2")
submit_btn = gr.Button("Run", elem_id="submit_btn")
with gr.Column(variant="panel", elem_classes="outputPanel"):
# output_image = gr.Image(type="pil", elem_id="output")
output_images = gr.Gallery(
label="Output Images",
show_label=True,
elem_id="output_gallery",
columns=1,
rows=10,
object_fit="contain",
height="auto",
)
submit_btn.click(
fn=process_image_and_text,
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
outputs=output_images,
)
return app
if __name__ == "__main__":
init_basemodel()
create_app().launch(debug=True, ssr_mode=False, max_threads=1)
|