File size: 16,103 Bytes
f9c4e37
 
 
 
 
 
 
 
 
f0ec2f0
05cbda5
f9c4e37
 
 
90790ea
 
f9c4e37
 
 
 
ba53076
 
f9c4e37
 
 
 
ba53076
f9c4e37
 
 
 
 
39b488c
f9c4e37
39b488c
f9c4e37
 
 
 
 
ba53076
 
 
 
 
 
 
88d26a2
a0ee85f
 
 
ba53076
 
459a249
 
0e76ca0
 
f288790
459a249
 
 
ba53076
 
f288790
459a249
 
 
ba53076
f288790
459a249
 
 
ba53076
f288790
459a249
 
 
ba53076
 
 
 
 
 
 
 
 
 
0e76ca0
 
 
 
 
 
 
 
 
 
 
8851fb5
 
e4d1ed2
8748eeb
931adb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68fc027
 
931adb9
88d26a2
e7e90f8
 
88d26a2
 
931adb9
 
88d26a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba53076
 
 
 
 
88d26a2
 
ba53076
 
 
 
 
 
 
 
88d26a2
ba53076
88d26a2
ba53076
 
 
88d26a2
ba53076
 
 
 
88d26a2
ba53076
 
88d26a2
ba53076
 
 
 
 
 
 
 
88d26a2
ba53076
 
 
 
88d26a2
ba53076
88d26a2
 
 
 
 
ba53076
 
88d26a2
ba53076
 
 
88d26a2
ba53076
 
 
 
88d26a2
ba53076
 
88d26a2
 
 
ba53076
 
 
 
 
 
 
 
 
e4d1ed2
ba53076
 
88d26a2
ba53076
 
 
 
 
68fc027
ba53076
 
68fc027
 
 
 
 
 
 
 
 
 
ba53076
f9c4e37
 
 
ba53076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d26a2
e4d1ed2
72808b9
e4d1ed2
88d26a2
 
 
 
 
ba53076
 
 
68fc027
 
 
 
 
 
 
 
 
 
ba53076
 
 
e4d1ed2
68fc027
ba53076
2060744
 
f9c4e37
 
 
8748eeb
3fa4852
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import sys
import torch
import diffusers
import transformers
import argparse
import peft
import copy
import cv2
import spaces
import gc
import gradio as gr
import numpy as np

from flash_attn import flash_attn_func

from peft import LoraConfig
from omegaconf import OmegaConf
from safetensors.torch import safe_open
from PIL import Image, ImageDraw, ImageFilter
from huggingface_hub import hf_hub_download
from transformers import pipeline

from models import HunyuanVideoTransformer3DModel
from pipelines import HunyuanVideoImageToVideoPipeline


header = """
# DRA-Ctrl Gradio App

<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://arxiv.org/abs/2505.23325"><img src="https://img.shields.io/badge/ariXv-Page-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://huggingface.co/spaces/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Space-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
</div>
"""

notice = """
For easier testing, in spatially-aligned image generation tasks, when passing the condition image to `gradio_app`, 
there's no need to manually input edge maps, depth maps, or other condition images - only the original image is required. 
The corresponding condition images will be automatically extracted.
"""


def init_basemodel():
    global transformer, scheduler, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, image_processor, pipe, current_task
    pipe = None
    current_task = None

    # init models
    device = "cuda" if torch.cuda.is_available() else "cpu"
    weight_dtype = torch.bfloat16
    transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                                 subfolder="transformer", 
                                                                 inference_subject_driven=False, 
                                                                 low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
    torch.cuda.empty_cache()
    gc.collect()
    scheduler = diffusers.FlowMatchEulerDiscreteScheduler()
    vae = diffusers.AutoencoderKLHunyuanVideo.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                              subfolder="vae", 
                                                              low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
    torch.cuda.empty_cache()
    gc.collect()
    text_encoder = transformers.LlavaForConditionalGeneration.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                                              subfolder="text_encoder", 
                                                                              low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
    torch.cuda.empty_cache()
    gc.collect()
    text_encoder_2 = transformers.CLIPTextModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                                subfolder="text_encoder_2", 
                                                                low_cpu_mem_usage=True).requires_grad_(False).to(device, dtype=weight_dtype)
    torch.cuda.empty_cache()
    gc.collect()                                              
    tokenizer = transformers.AutoTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                           subfolder="tokenizer")
    tokenizer_2 = transformers.CLIPTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                             subfolder="tokenizer_2")
    image_processor = transformers.CLIPImageProcessor.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V', 
                                                                      subfolder="image_processor")

    vae.enable_tiling()
    vae.enable_slicing()

    pipe = HunyuanVideoImageToVideoPipeline(
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        transformer=transformer,
        vae=vae,
        scheduler=copy.deepcopy(scheduler),
        text_encoder_2=text_encoder_2,
        tokenizer_2=tokenizer_2,
        image_processor=image_processor,
    )


@spaces.GPU
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2):
    # set up the model
    global pipe, current_task, transformer
    if current_task != task:
        if current_task is None:
            # insert LoRA
            lora_config = LoraConfig(
                r=16,
                lora_alpha=16,
                init_lora_weights="gaussian",
                target_modules=[
                    'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
                    'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
                    'ff.net.0.proj', 'ff.net.2',
                    'ff_context.net.0.proj', 'ff_context.net.2',
                    'norm1_context.linear', 'norm1.linear',
                    'norm.linear', 'proj_mlp', 'proj_out',
                ]
            )
            transformer.add_adapter(lora_config)
        else:
            def restore_forward(module):
                def restored_forward(self, x, *args, **kwargs):
                    return module.original_forward(x, *args, **kwargs)
                return restored_forward.__get__(module, type(module))
            
            for n, m in transformer.named_modules():
                if isinstance(m, peft.tuners.lora.layer.Linear):
                    m.forward = restore_forward(m)

        current_task = task

        # hack LoRA forward
        def create_hacked_forward(module):
            if not hasattr(module, 'original_forward'):
                module.original_forward = module.forward
            lora_forward = module.forward
            non_lora_forward = module.base_layer.forward
            img_sequence_length = int((512 / 8 / 2) ** 2)
            encoder_sequence_length = 144 + 252 # encoder sequence: 144 img 252 txt
            num_imgs = 4
            num_generated_imgs = 3
            num_encoder_sequences = 2 if task in ['subject_driven', 'style_transfer'] else 1

            def hacked_lora_forward(self, x, *args, **kwargs):
                if x.shape[1] == img_sequence_length * num_imgs and len(x.shape) > 2:
                    return torch.cat((
                        lora_forward(x[:, :-img_sequence_length*num_generated_imgs], *args, **kwargs),
                        non_lora_forward(x[:, -img_sequence_length*num_generated_imgs:], *args, **kwargs)
                    ), dim=1)
                elif x.shape[1] == encoder_sequence_length * num_encoder_sequences or x.shape[1] == encoder_sequence_length:
                    return lora_forward(x, *args, **kwargs)
                elif x.shape[1] == img_sequence_length * num_imgs + encoder_sequence_length * num_encoder_sequences:
                    return torch.cat((
                        lora_forward(x[:, :(num_imgs - num_generated_imgs)*img_sequence_length], *args, **kwargs),
                        non_lora_forward(x[:, (num_imgs - num_generated_imgs)*img_sequence_length:-num_encoder_sequences*encoder_sequence_length], *args, **kwargs),
                        lora_forward(x[:, -num_encoder_sequences*encoder_sequence_length:], *args, **kwargs)
                    ), dim=1)
                elif x.shape[1] == 3072:
                    return non_lora_forward(x, *args, **kwargs)
                else:
                    raise ValueError(
                        f"hacked_lora_forward receives unexpected sequence length: {x.shape[1]}, input shape: {x.shape}!"
                    )

            return hacked_lora_forward.__get__(module, type(module))

        for n, m in transformer.named_modules():
            if isinstance(m, peft.tuners.lora.layer.Linear):
                m.forward = create_hacked_forward(m)

        # load LoRA weights
        model_root = hf_hub_download(
            repo_id="Kunbyte/DRA-Ctrl",
            filename=f"{task}.safetensors",
            resume_download=True)

        try:
            with safe_open(model_root, framework="pt") as f:
                lora_weights = {}
                for k in f.keys():
                    param = f.get_tensor(k) 
                    if k.endswith(".weight"):
                        k = k.replace('.weight', '.default.weight')
                    lora_weights[k] = param
                transformer.load_state_dict(lora_weights, strict=False)
        except Exception as e:
            raise ValueError(f'{e}')

        transformer.requires_grad_(False)

    # start generation
    c_txt = None if condition_image_prompt == "" else condition_image_prompt
    c_img = condition_image.resize((512, 512))
    t_txt = target_prompt

    if task not in ['subject_driven', 'style_transfer']:
        if task == "canny":
            def get_canny_edge(img):
                img_np = np.array(img)
                img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
                edges = cv2.Canny(img_gray, 100, 200)
                edges_tmp = Image.fromarray(edges).convert("RGB")
                edges[edges == 0] = 128
                return Image.fromarray(edges).convert("RGB")
            c_img = get_canny_edge(c_img)
        elif task == "coloring":
            c_img = (
                c_img.resize((512, 512))
                .convert("L")
                .convert("RGB")
            )
        elif task == "deblurring":
            blur_radius = 10
            c_img = (
                c_img.convert("RGB")
                .filter(ImageFilter.GaussianBlur(blur_radius))
                .resize((512, 512))
                .convert("RGB")
            )
        elif task == "depth":
            def get_depth_map(img):
                from transformers import pipeline

                depth_pipe = pipeline(
                    task="depth-estimation",
                    model="LiheYoung/depth-anything-small-hf",
                    device="cpu",
                )
                return depth_pipe(img)["depth"].convert("RGB").resize((512, 512))
            c_img = get_depth_map(c_img)
            k = (255 - 128) / 255
            b = 128
            c_img = c_img.point(lambda x: k * x + b)
        elif task == "depth_pred":
            c_img = c_img
        elif task == "fill":
            c_img = c_img.resize((512, 512)).convert("RGB")
            x1, x2 = fill_x1, fill_x2
            y1, y2 = fill_y1, fill_y2
            mask = Image.new("L", (512, 512), 0)
            draw = ImageDraw.Draw(mask)
            draw.rectangle((x1, y1, x2, y2), fill=255)
            if inpainting:
                mask = Image.eval(mask, lambda a: 255 - a)
            c_img = Image.composite(
                c_img,
                Image.new("RGB", (512, 512), (255, 255, 255)),
                mask
            )
            c_img = Image.composite(
                c_img,
                Image.new("RGB", (512, 512), (128, 128, 128)),
                mask
            )
        elif task == "sr":
            c_img = c_img.resize((int(512 / 4), int(512 / 4))).convert("RGB")
            c_img = c_img.resize((512, 512))

    gen_img = pipe(
        image=c_img,
        prompt=[t_txt.strip()],
        prompt_condition=[c_txt.strip()] if c_txt is not None else None,
        prompt_2=[t_txt],
        height=512,
        width=512,
        num_frames=5,
        num_inference_steps=num_steps,
        guidance_scale=6.0,
        num_videos_per_prompt=1,
        generator=torch.Generator(device=pipe.transformer.device).manual_seed(random_seed),
        output_type='pt',
        image_embed_interleave=4,
        frame_gap=48,
        mixup=True,
        mixup_num_imgs=2,
        enhance_tp=task in ['subject_driven'],
    ).frames

    output_images = []
    for i in range(10):
        out = gen_img[:, i:i+1, :, :, :]
        out = out.squeeze(0).squeeze(0).cpu().to(torch.float32).numpy()
        out = np.transpose(out, (1, 2, 0))
        out = (out * 255).astype(np.uint8)
        out = Image.fromarray(out)
        output_images.append(out)
    
    return output_images[1:] + [output_images[0]]

def create_app():
    with gr.Blocks() as app:
        gr.Markdown(header, elem_id="header")
        with gr.Row(equal_height=False):
            with gr.Column(variant="panel", elem_classes="inputPanel"):
                condition_image = gr.Image(
                    type="pil", label="Condition Image", width=300, elem_id="input"
                )
                task = gr.Radio(
                    [
                        ("Subject-driven Image Generation", "subject_driven"),
                        ("Canny-to-Image", "canny"),
                        ("Colorization", "coloring"),
                        ("Deblurring", "deblurring"),
                        ("Depth-to-Image", "depth"),
                        ("Depth Prediction", "depth_pred"),
                        ("In/Out-Painting", "fill"),
                        ("Super-Resolution", "sr"),
                        ("Style Transfer", "style_transfer")
                    ],
                    label="Task Selection",
                    value="subject_driven",
                    interactive=True,
                    elem_id="task_selection"
                )
                gr.Markdown(notice, elem_id="notice")
                target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
                condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt (Only required by Subject-driven Image Generation and Style Transfer tasks)", elem_id="cp")
                random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
                num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
                inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
                fill_x1 = gr.Number(label="In/Out-painting Box Left Boundary", precision=0, value=128, elem_id="fill_x1")
                fill_x2 = gr.Number(label="In/Out-painting Box Right Boundary", precision=0, value=384, elem_id="fill_x2")
                fill_y1 = gr.Number(label="In/Out-painting Box Top Boundary", precision=0, value=128, elem_id="fill_y1")
                fill_y2 = gr.Number(label="In/Out-painting Box Bottom Boundary", precision=0, value=384, elem_id="fill_y2")
                submit_btn = gr.Button("Run", elem_id="submit_btn")

            with gr.Column(variant="panel", elem_classes="outputPanel"):
                # output_image = gr.Image(type="pil", elem_id="output")
                output_images = gr.Gallery(
                    label="Output Images",
                    show_label=True,
                    elem_id="output_gallery",
                    columns=1,
                    rows=10,
                    object_fit="contain",
                    height="auto",
                )

        submit_btn.click(
            fn=process_image_and_text,
            inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
            outputs=output_images,
        )
        
    return app


if __name__ == "__main__":
    init_basemodel()
    create_app().launch(debug=True, ssr_mode=False, max_threads=1)