File size: 12,774 Bytes
6149106
b9604a1
 
 
6149106
83c0537
 
bb3dffd
83c0537
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3dffd
9b00313
83c0537
bb3dffd
83c0537
bb3dffd
 
 
83c0537
 
 
bb3dffd
83c0537
11e3d09
83c0537
 
c19f33e
83c0537
8ea6312
83c0537
bb3dffd
83c0537
11e3d09
83c0537
 
 
 
c19f33e
83c0537
8ea6312
83c0537
bb3dffd
83c0537
 
 
bb3dffd
 
 
83c0537
 
5c77929
83c0537
bb3dffd
 
 
 
 
 
83c0537
 
 
 
bb3dffd
83c0537
 
 
 
bb3dffd
83c0537
bb3dffd
 
83c0537
bb3dffd
c19f33e
 
 
bb3dffd
c19f33e
ff1ed9c
8281640
e503e0f
1331506
c19f33e
 
 
83c0537
bb3dffd
83c0537
 
 
 
bb3dffd
83c0537
 
e503e0f
83c0537
a7a10f6
8281640
83c0537
 
 
1331506
54f81d8
 
1331506
54f81d8
 
1331506
54f81d8
 
bf69cf6
bb3dffd
54f81d8
83c0537
 
8ea6312
 
83c0537
 
 
bb3dffd
 
83c0537
 
 
 
bb3dffd
 
 
 
83c0537
 
 
bb3dffd
 
e503e0f
bb3dffd
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
a7a10f6
e503e0f
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
 
07f4e87
e503e0f
 
 
 
 
bb3dffd
e503e0f
83c0537
1331506
bb3dffd
1331506
83c0537
1331506
83c0537
 
bb3dffd
83c0537
 
8ea6312
83c0537
9b00313
1331506
 
83c0537
 
8ea6312
83c0537
bb3dffd
 
 
83c0537
bb3dffd
 
 
 
 
 
 
 
 
 
83c0537
 
 
 
 
bb3dffd
 
 
 
83c0537
 
 
 
 
 
 
 
9b00313
 
83c0537
11e3d09
9b00313
 
481806b
bb3dffd
83c0537
6149106
83c0537
 
bb3dffd
 
 
83c0537
 
 
11e3d09
83c0537
 
 
85e85fd
6149106
bb3dffd
83c0537
 
 
 
 
 
 
481806b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import gradio as gr
from typing import Dict, List, Union, Optional
import logging
import traceback

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ContentAnalyzer:
    def __init__(self):
        self.hf_token = os.getenv("HF_TOKEN")
        if not self.hf_token:
            raise ValueError("HF_TOKEN environment variable is not set!")
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model = None
        self.tokenizer = None
        logger.info(f"Initialized analyzer with device: {self.device}")

    async def load_model(self, progress=None) -> None:
        """Load the model and tokenizer with progress updates and detailed logging."""
        try:
            print("\n=== Starting Model Loading ===")
            print(f"Time: {datetime.now()}")
            
            if progress:
                progress(0.1, "Loading tokenizer...")
            
            print("Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(
                "meta-llama/Llama-3.2-3B",
                use_fast=True
            )

            if progress:
                progress(0.3, "Loading model...")
            
            print(f"Loading model on {self.device}...")
            self.model = AutoModelForCausalLM.from_pretrained(
                "meta-llama/Llama-3.2-3B",
                token=self.hf_token,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device_map="auto"
            )

            if progress:
                progress(0.5, "Model loaded successfully")
            
            print("Model and tokenizer loaded successfully")
            logger.info(f"Model loaded successfully on {self.device}")
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            print(f"\nERROR DURING MODEL LOADING: {str(e)}")
            print("Stack trace:")
            traceback.print_exc()
            raise

    def _chunk_text(self, text: str, chunk_size: int = 256, overlap: int = 15) -> List[str]:
        """Split text into overlapping chunks for processing."""
        chunks = []
        for i in range(0, len(text), chunk_size - overlap):
            chunk = text[i:i + chunk_size]
            chunks.append(chunk)
        print(f"Split text into {len(chunks)} chunks with {overlap} token overlap")
        return chunks

    async def analyze_chunk(
        self,
        chunk: str,
        trigger_categories: Dict,
        progress: Optional[gr.Progress] = None,
        current_progress: float = 0,
        progress_step: float = 0
    ) -> Dict[str, float]:
        """Analyze a single chunk of text for triggers with detailed logging."""
        chunk_triggers = {}
        print(f"\n--- Processing Chunk ---")
        print(f"Chunk text (preview): {chunk[:50]}...")
        
        for category, info in trigger_categories.items():
            mapped_name = info["mapped_name"]
            description = info["description"]

            print(f"\nAnalyzing for {mapped_name}...")
            prompt = f"""
            Check this text for any clear indication of {mapped_name} ({description}).
            only say yes if you are confident, make sure the text is not metaphorical.
            Respond concisely and only with: YES, NO, or MAYBE.
            Text: {chunk}
            Answer:
            """

            try:
                print("Sending prompt to model...")
                inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
                inputs = {k: v.to(self.device) for k, v in inputs.items()}

                with torch.no_grad():
                    print("Generating response...")
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=2,
                        do_sample=True,
                        temperature=0.3,
                        top_p=0.9,
                        pad_token_id=self.tokenizer.eos_token_id
                    )

                response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip().upper()
                first_word = response_text.split("\n")[-1].split()[0] if response_text else "NO"
                print(f"Model response for {mapped_name}: {first_word}")

                if first_word == "YES":
                    print(f"Detected {mapped_name} in this chunk!")
                    chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 1
                elif first_word == "MAYBE":
                    print(f"Possible {mapped_name} detected, marking for further review.")
                    chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 0.5
                else:
                    print(f"No {mapped_name} detected in this chunk.")

                if progress:
                    current_progress += progress_step
                    progress(min(current_progress, 0.9), f"Analyzing {mapped_name}...")

            except Exception as e:
                logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}")
                print(f"Error during analysis of {mapped_name}: {str(e)}")
                traceback.print_exc()

        return chunk_triggers

    async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
        """Analyze the entire script for triggers with progress updates and detailed logging."""
        print("\n=== Starting Script Analysis ===")
        print(f"Time: {datetime.now()}")

        if not self.model or not self.tokenizer:
            await self.load_model(progress)

        # Initialize trigger categories (kept from your working script)
        trigger_categories = {

            "Violence": {
                        "mapped_name": "Violence",
                        "description": (
                            "Any act of physical force meant to cause harm, injury, or death, including fights, threats, and large-scale violence like wars or riots."
                        )
                    },

            "Death": {
                        "mapped_name": "Death References",
                        "description": (
                            "Mentions or depictions of death, such as characters dying, references to deceased people, funerals, or mourning."
                        )
                    },

            "Substance Use": {
                        "mapped_name": "Substance Use",
                        "description": (
                            "Any reference to using or abusing drugs, alcohol, or other substances, including scenes of drinking, smoking, or drug use."
                        )
                    },

            "Gore": {
                        "mapped_name": "Gore",
                        "description": (
                            "Graphic depictions of severe injuries or mutilation, often with detailed blood, exposed organs, or dismemberment."
                        )
                    },

            "Vomit": {
                        "mapped_name": "Vomit",
                        "description": (
                            "Any explicit reference to vomiting or related actions. This includes only very specific mentions of nausea or the act of vomiting, with more focus on the direct description, only flag this if you absolutely believe it's present."
                        )
                    },

            "Sexual Content": {
                        "mapped_name": "Sexual Content",
                        "description": (
                            "Depictions or mentions of sexual activity, intimacy, or behavior, including sexual themes like harassment or innuendo."
                        )
                    },

            "Sexual Abuse": {
                        "mapped_name": "Sexual Abuse",
                        "description": (
                            "Explicit non-consensual sexual acts, including assault, molestation, or harassment, and the emotional or legal consequences of such abuse. A stronger focus on detailed depictions or direct references to coercion or violence."
                        )
                    },

            "Self-Harm": {
                        "mapped_name": "Self-Harm",
                        "description": (
                            "Depictions or mentions of intentional self-injury, including acts like cutting, burning, or other self-destructive behavior. Emphasis on more graphic or repeated actions, not implied or casual references."
                        )
                    },

            "Gun Use": {
                        "mapped_name": "Gun Use",
                        "description": (
                            "Explicit mentions of firearms in use, including threatening actions or accidents involving guns. Only triggers when the gun use is shown in a clear, violent context."
                        )
                    },

            "Animal Cruelty": {
                        "mapped_name": "Animal Cruelty",
                        "description": (
                            "Direct or explicit harm, abuse, or neglect of animals, including physical abuse or suffering, and actions performed for human entertainment or experimentation. Triggers only in clear, violent depictions."
                        )
                    },

            "Mental Health Issues": {
                        "mapped_name": "Mental Health Issues",
                        "description": (
                            "References to psychological struggles, such as depression, anxiety, or PTSD, including therapy or coping mechanisms."
                        )
                    }
        }

        chunks = self._chunk_text(script)
        identified_triggers = {}
        progress_step = 0.4 / (len(chunks) * len(trigger_categories))
        current_progress = 0.5  # Starting after model loading

        for chunk_idx, chunk in enumerate(chunks, 1):
            chunk_triggers = await self.analyze_chunk(
                chunk,
                trigger_categories,
                progress,
                current_progress,
                progress_step
            )
            
            for trigger, count in chunk_triggers.items():
                identified_triggers[trigger] = identified_triggers.get(trigger, 0) + count

        if progress:
            progress(0.95, "Finalizing results...")

        print("\n=== Analysis Complete ===")
        print("Final Results:")
        final_triggers = []

        for mapped_name, count in identified_triggers.items():
            if count > 0.5:
                final_triggers.append(mapped_name)
            print(f"- {mapped_name}: found in {count} chunks")

        if not final_triggers:
            print("No triggers detected")
            final_triggers = ["None"]

        return final_triggers

async def analyze_content(
    script: str,
    progress: Optional[gr.Progress] = None
) -> Dict[str, Union[List[str], str]]:
    """Main analysis function for the Gradio interface with detailed logging."""
    print("\n=== Starting Content Analysis ===")
    print(f"Time: {datetime.now()}")
    
    analyzer = ContentAnalyzer()
    
    try:
        triggers = await analyzer.analyze_script(script, progress)
        
        if progress:
            progress(1.0, "Analysis complete!")

        result = {
            "detected_triggers": triggers,
            "confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
            "model": "Llama-3.2-3B",
            "analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }

        print("\nFinal Result Dictionary:", result)
        return result

    except Exception as e:
        logger.error(f"Analysis error: {str(e)}")
        print(f"\nERROR OCCURRED: {str(e)}")
        print("Stack trace:")
        traceback.print_exc()
        return {
            "detected_triggers": ["Error occurred during analysis"],
            "confidence": "Error",
            "model": "Llama-3.2-3B",
            "analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "error": str(e)
        }

if __name__ == "__main__":
    # Gradio interface
    iface = gr.Interface(
        fn=analyze_content,
        inputs=gr.Textbox(lines=8, label="Input Text"),
        outputs=gr.JSON(),
        title="Content Analysis",
        description="Analyze text content for sensitive topics"
    )
    iface.launch()