Spaces:
Running
Running
File size: 12,774 Bytes
6149106 b9604a1 6149106 83c0537 bb3dffd 83c0537 bb3dffd 9b00313 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 11e3d09 83c0537 c19f33e 83c0537 8ea6312 83c0537 bb3dffd 83c0537 11e3d09 83c0537 c19f33e 83c0537 8ea6312 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 5c77929 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd c19f33e bb3dffd c19f33e ff1ed9c 8281640 e503e0f 1331506 c19f33e 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 e503e0f 83c0537 a7a10f6 8281640 83c0537 1331506 54f81d8 1331506 54f81d8 1331506 54f81d8 bf69cf6 bb3dffd 54f81d8 83c0537 8ea6312 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd e503e0f bb3dffd e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f a7a10f6 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f 07f4e87 e503e0f bb3dffd e503e0f 83c0537 1331506 bb3dffd 1331506 83c0537 1331506 83c0537 bb3dffd 83c0537 8ea6312 83c0537 9b00313 1331506 83c0537 8ea6312 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 bb3dffd 83c0537 9b00313 83c0537 11e3d09 9b00313 481806b bb3dffd 83c0537 6149106 83c0537 bb3dffd 83c0537 11e3d09 83c0537 85e85fd 6149106 bb3dffd 83c0537 481806b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import gradio as gr
from typing import Dict, List, Union, Optional
import logging
import traceback
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ContentAnalyzer:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HF_TOKEN environment variable is not set!")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
logger.info(f"Initialized analyzer with device: {self.device}")
async def load_model(self, progress=None) -> None:
"""Load the model and tokenizer with progress updates and detailed logging."""
try:
print("\n=== Starting Model Loading ===")
print(f"Time: {datetime.now()}")
if progress:
progress(0.1, "Loading tokenizer...")
print("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-3.2-3B",
use_fast=True
)
if progress:
progress(0.3, "Loading model...")
print(f"Loading model on {self.device}...")
self.model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-3B",
token=self.hf_token,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto"
)
if progress:
progress(0.5, "Model loaded successfully")
print("Model and tokenizer loaded successfully")
logger.info(f"Model loaded successfully on {self.device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
print(f"\nERROR DURING MODEL LOADING: {str(e)}")
print("Stack trace:")
traceback.print_exc()
raise
def _chunk_text(self, text: str, chunk_size: int = 256, overlap: int = 15) -> List[str]:
"""Split text into overlapping chunks for processing."""
chunks = []
for i in range(0, len(text), chunk_size - overlap):
chunk = text[i:i + chunk_size]
chunks.append(chunk)
print(f"Split text into {len(chunks)} chunks with {overlap} token overlap")
return chunks
async def analyze_chunk(
self,
chunk: str,
trigger_categories: Dict,
progress: Optional[gr.Progress] = None,
current_progress: float = 0,
progress_step: float = 0
) -> Dict[str, float]:
"""Analyze a single chunk of text for triggers with detailed logging."""
chunk_triggers = {}
print(f"\n--- Processing Chunk ---")
print(f"Chunk text (preview): {chunk[:50]}...")
for category, info in trigger_categories.items():
mapped_name = info["mapped_name"]
description = info["description"]
print(f"\nAnalyzing for {mapped_name}...")
prompt = f"""
Check this text for any clear indication of {mapped_name} ({description}).
only say yes if you are confident, make sure the text is not metaphorical.
Respond concisely and only with: YES, NO, or MAYBE.
Text: {chunk}
Answer:
"""
try:
print("Sending prompt to model...")
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
print("Generating response...")
outputs = self.model.generate(
**inputs,
max_new_tokens=2,
do_sample=True,
temperature=0.3,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id
)
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip().upper()
first_word = response_text.split("\n")[-1].split()[0] if response_text else "NO"
print(f"Model response for {mapped_name}: {first_word}")
if first_word == "YES":
print(f"Detected {mapped_name} in this chunk!")
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 1
elif first_word == "MAYBE":
print(f"Possible {mapped_name} detected, marking for further review.")
chunk_triggers[mapped_name] = chunk_triggers.get(mapped_name, 0) + 0.5
else:
print(f"No {mapped_name} detected in this chunk.")
if progress:
current_progress += progress_step
progress(min(current_progress, 0.9), f"Analyzing {mapped_name}...")
except Exception as e:
logger.error(f"Error analyzing chunk for {mapped_name}: {str(e)}")
print(f"Error during analysis of {mapped_name}: {str(e)}")
traceback.print_exc()
return chunk_triggers
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
"""Analyze the entire script for triggers with progress updates and detailed logging."""
print("\n=== Starting Script Analysis ===")
print(f"Time: {datetime.now()}")
if not self.model or not self.tokenizer:
await self.load_model(progress)
# Initialize trigger categories (kept from your working script)
trigger_categories = {
"Violence": {
"mapped_name": "Violence",
"description": (
"Any act of physical force meant to cause harm, injury, or death, including fights, threats, and large-scale violence like wars or riots."
)
},
"Death": {
"mapped_name": "Death References",
"description": (
"Mentions or depictions of death, such as characters dying, references to deceased people, funerals, or mourning."
)
},
"Substance Use": {
"mapped_name": "Substance Use",
"description": (
"Any reference to using or abusing drugs, alcohol, or other substances, including scenes of drinking, smoking, or drug use."
)
},
"Gore": {
"mapped_name": "Gore",
"description": (
"Graphic depictions of severe injuries or mutilation, often with detailed blood, exposed organs, or dismemberment."
)
},
"Vomit": {
"mapped_name": "Vomit",
"description": (
"Any explicit reference to vomiting or related actions. This includes only very specific mentions of nausea or the act of vomiting, with more focus on the direct description, only flag this if you absolutely believe it's present."
)
},
"Sexual Content": {
"mapped_name": "Sexual Content",
"description": (
"Depictions or mentions of sexual activity, intimacy, or behavior, including sexual themes like harassment or innuendo."
)
},
"Sexual Abuse": {
"mapped_name": "Sexual Abuse",
"description": (
"Explicit non-consensual sexual acts, including assault, molestation, or harassment, and the emotional or legal consequences of such abuse. A stronger focus on detailed depictions or direct references to coercion or violence."
)
},
"Self-Harm": {
"mapped_name": "Self-Harm",
"description": (
"Depictions or mentions of intentional self-injury, including acts like cutting, burning, or other self-destructive behavior. Emphasis on more graphic or repeated actions, not implied or casual references."
)
},
"Gun Use": {
"mapped_name": "Gun Use",
"description": (
"Explicit mentions of firearms in use, including threatening actions or accidents involving guns. Only triggers when the gun use is shown in a clear, violent context."
)
},
"Animal Cruelty": {
"mapped_name": "Animal Cruelty",
"description": (
"Direct or explicit harm, abuse, or neglect of animals, including physical abuse or suffering, and actions performed for human entertainment or experimentation. Triggers only in clear, violent depictions."
)
},
"Mental Health Issues": {
"mapped_name": "Mental Health Issues",
"description": (
"References to psychological struggles, such as depression, anxiety, or PTSD, including therapy or coping mechanisms."
)
}
}
chunks = self._chunk_text(script)
identified_triggers = {}
progress_step = 0.4 / (len(chunks) * len(trigger_categories))
current_progress = 0.5 # Starting after model loading
for chunk_idx, chunk in enumerate(chunks, 1):
chunk_triggers = await self.analyze_chunk(
chunk,
trigger_categories,
progress,
current_progress,
progress_step
)
for trigger, count in chunk_triggers.items():
identified_triggers[trigger] = identified_triggers.get(trigger, 0) + count
if progress:
progress(0.95, "Finalizing results...")
print("\n=== Analysis Complete ===")
print("Final Results:")
final_triggers = []
for mapped_name, count in identified_triggers.items():
if count > 0.5:
final_triggers.append(mapped_name)
print(f"- {mapped_name}: found in {count} chunks")
if not final_triggers:
print("No triggers detected")
final_triggers = ["None"]
return final_triggers
async def analyze_content(
script: str,
progress: Optional[gr.Progress] = None
) -> Dict[str, Union[List[str], str]]:
"""Main analysis function for the Gradio interface with detailed logging."""
print("\n=== Starting Content Analysis ===")
print(f"Time: {datetime.now()}")
analyzer = ContentAnalyzer()
try:
triggers = await analyzer.analyze_script(script, progress)
if progress:
progress(1.0, "Analysis complete!")
result = {
"detected_triggers": triggers,
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
"model": "Llama-3.2-3B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
print("\nFinal Result Dictionary:", result)
return result
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
print(f"\nERROR OCCURRED: {str(e)}")
print("Stack trace:")
traceback.print_exc()
return {
"detected_triggers": ["Error occurred during analysis"],
"confidence": "Error",
"model": "Llama-3.2-3B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": str(e)
}
if __name__ == "__main__":
# Gradio interface
iface = gr.Interface(
fn=analyze_content,
inputs=gr.Textbox(lines=8, label="Input Text"),
outputs=gr.JSON(),
title="Content Analysis",
description="Analyze text content for sensitive topics"
)
iface.launch() |