Spaces:
Running
Running
File size: 9,956 Bytes
2cadc3d cba901f 2cadc3d cba901f 2cadc3d cba901f 2cadc3d cba901f 2cadc3d b826a4f 2cadc3d cba901f b826a4f 2cadc3d cba901f 2cadc3d cba901f 2cadc3d cba901f 2cadc3d cba901f 2cadc3d b826a4f 2cadc3d b826a4f cba901f b826a4f 2b6c9d9 b826a4f 2b6c9d9 b826a4f cba901f b826a4f 2cadc3d b826a4f 2cadc3d b826a4f 2cadc3d b826a4f cba901f b826a4f cba901f 2b6c9d9 b826a4f cba901f b826a4f cba901f b826a4f cba901f b826a4f 2cadc3d b826a4f 2cadc3d cba901f b826a4f cba901f b826a4f 2cadc3d b826a4f 2cadc3d b826a4f 2cadc3d b826a4f 2cadc3d b826a4f 2cadc3d b826a4f 2cadc3d b826a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from datetime import datetime
import gradio as gr
from typing import Dict, List, Union, Optional
import logging
import re
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ContentAnalyzer:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
self.categories = [
"Violence", "Death", "Substance Use", "Gore",
"Vomit", "Sexual Content", "Sexual Abuse",
"Self-Harm", "Gun Use", "Animal Cruelty",
"Mental Health Issues"
]
self.pattern = re.compile(r'\b(' + '|'.join(self.categories) + r')\b', re.IGNORECASE)
logger.info(f"Initialized analyzer with device: {self.device}")
self._load_model()
def _load_model(self) -> None:
"""Load model and tokenizer with CPU optimization"""
try:
logger.info("Loading model components...")
self.tokenizer = AutoTokenizer.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
use_fast=True,
truncation_side="left"
)
self.model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
torch_dtype=torch.float32,
low_cpu_mem_usage=True
).to(self.device).eval()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise
def _chunk_text(self, text: str, max_tokens: int = 512) -> List[str]:
"""Context-aware chunking with token counting"""
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
chunks = []
current_chunk = []
current_length = 0
for para in paragraphs:
para_tokens = self.tokenizer.encode(para, add_special_tokens=False)
para_length = len(para_tokens)
if current_length + para_length > max_tokens and current_chunk:
chunk_text = "\n\n".join(current_chunk)
chunks.append(chunk_text)
current_chunk = [para]
current_length = para_length
else:
current_chunk.append(para)
current_length += para_length
if current_chunk:
chunk_text = "\n\n".join(current_chunk)
chunks.append(chunk_text)
logger.info(f"Split text into {len(chunks)} chunks (max_tokens={max_tokens})")
return chunks
async def _analyze_chunk(self, chunk: str) -> tuple[List[str], str]:
"""Deep analysis with step-by-step reasoning"""
prompt = f"""As a deep-thinking content analyzer, carefully evaluate this text for sensitive content.
Input text: {chunk}
Think through each step:
1. What is happening in the text?
2. What potentially sensitive themes or elements are present?
3. For each category below, is there clear evidence?
Categories: {", ".join(self.categories)}
Detailed analysis:
"""
try:
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
do_sample=True,
temperature=0.7,
top_p=0.9,
max_length=8192
)
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract categories more reliably using multiple patterns
categories_found = set()
# Look for explicit category mentions
category_matches = self.pattern.findall(full_response.lower())
# Normalize and validate matches
for match in category_matches:
for category in self.categories:
if match.lower() == category.lower():
categories_found.add(category)
# Convert to list and sort for consistency
matched_categories = sorted(list(categories_found))
# Clean up reasoning text
reasoning = full_response.split("\n\nCategories found:")[0] if "\n\nCategories found:" in full_response else full_response
reasoning = reasoning.strip()
if not matched_categories and any(trigger_word in full_response.lower() for trigger_word in
["concerning", "warning", "caution", "trigger", "sensitive"]):
logger.warning(f"Potential triggers found but no categories matched in chunk")
logger.info(f"Chunk analysis complete - Categories found: {matched_categories}")
return matched_categories, reasoning
except Exception as e:
logger.error(f"Chunk analysis error: {str(e)}")
return [], f"Analysis error: {str(e)}"
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> tuple[List[str], List[str]]:
"""Main analysis workflow with progress updates"""
if not script.strip():
return ["No content provided"], ["No analysis performed"]
identified_triggers = set()
reasoning_outputs = []
chunks = self._chunk_text(script)
if not chunks:
return ["Empty text after chunking"], ["No analysis performed"]
total_chunks = len(chunks)
for idx, chunk in enumerate(chunks):
if progress:
progress((idx/total_chunks, f"Deep analysis of chunk {idx+1}/{total_chunks}"))
chunk_triggers, chunk_reasoning = await self._analyze_chunk(chunk)
identified_triggers.update(chunk_triggers)
reasoning_outputs.append(f"Chunk {idx + 1} Analysis:\n{chunk_reasoning}")
logger.info(f"Processed chunk {idx+1}/{total_chunks}, found triggers: {chunk_triggers}")
if progress:
progress((1.0, "Analysis complete"))
final_triggers = sorted(list(identified_triggers)) if identified_triggers else ["None"]
logger.info(f"Final triggers identified: {final_triggers}")
return final_triggers, reasoning_outputs
async def analyze_content(
script: str,
progress: Optional[gr.Progress] = None
) -> Dict[str, Union[List[str], str]]:
"""Gradio interface function with enhanced trigger detection"""
try:
analyzer = ContentAnalyzer()
triggers, reasoning_output = await analyzer.analyze_script(script, progress)
# Extract triggers from detailed analysis
detected_triggers = set()
full_reasoning = "\n\n".join(reasoning_output)
# Look for explicit category markers
category_markers = [
(r'\b(\w+):\s*\+', 1), # Matches "Category: +"
(r'\*\*(\w+(?:\s+\w+)?):\*\*[^\n]*?\bMarked with "\+"', 1), # Matches "**Category:** ... Marked with "+"
(r'(\w+(?:\s+\w+)?)\s*is clearly present', 1), # Matches "Category is clearly present"
]
for pattern, group in category_markers:
matches = re.finditer(pattern, full_reasoning, re.IGNORECASE)
for match in matches:
category = match.group(group).strip()
# Normalize category names to match predefined categories
for predefined_category in analyzer.categories:
if category.lower() in predefined_category.lower():
detected_triggers.add(predefined_category)
# Add any triggers found through direct pattern matching
for category in analyzer.categories:
pattern = fr'\b{re.escape(category)}\b.*?(present|evident|indicated|clear|obvious)'
if re.search(pattern, full_reasoning, re.IGNORECASE):
detected_triggers.add(category)
# If no triggers were found through detailed analysis, fall back to original triggers
final_triggers = sorted(list(detected_triggers)) if detected_triggers else triggers
result = {
"detected_triggers": final_triggers if final_triggers else ["None"],
"confidence": "High confidence" if final_triggers and final_triggers != ["None"] else "No triggers found",
"model": "DeepSeek-R1-Distill-Qwen-1.5B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"analysis_reasoning": full_reasoning
}
logger.info(f"Enhanced analysis complete. Results: {result}")
return result
except Exception as e:
logger.error(f"Analysis error: {str(e)}")
return {
"detected_triggers": ["Analysis error"],
"confidence": "Error",
"model": "DeepSeek-R1-Distill-Qwen-1.5B",
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"analysis_reasoning": str(e),
"error": str(e)
}
if __name__ == "__main__":
iface = gr.Interface(
fn=analyze_content,
inputs=gr.Textbox(lines=12, label="Paste Script Here", placeholder="Enter text to analyze..."),
outputs=[
gr.JSON(label="Analysis Results"),
gr.Textbox(label="Analysis Reasoning", lines=10)
],
title="TREAT - Trigger Analysis for Entertainment Texts",
description="Deep analysis of scripts for sensitive content using AI",
allow_flagging="never"
)
iface.launch(show_error=True) |